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Abstract

Firms can now use algorithms to regulate workers’ time and activities more stringently
than ever before. Using rich transaction data from a ride-hailing company in Asia,
we document algorithmic wage-setting and study its impact on worker behavior. The
algorithm profiles drivers based on their working schedules. Our data show that drivers
favored by the algorithm earn 8% more hourly than non-favored drivers. To quantify
the welfare effects of such preferential algorithms, we construct and estimate a two-
sided market model with time-varying demand and dynamic labor supply decisions.
Results show that removing the preferential algorithm would, in the short term, reduce
platform revenues by 12% and total surplus by 7%. In the long run, raising rider
fares re-balances demand and supply, resulting in minimal welfare loss. Without the
preferential algorithm, an additional 10% of drivers would switch to flexible schedules.
Lastly, young, male, local drivers benefit more from the non-preferential algorithm.
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1 Introduction

Recent years have witnessed the rapid acceleration of algorithmic technologies. In labor

markets, algorithmic scheduling and wage-setting approaches have spread and changed the

relationship between workers and employers. Employers collect a wide array of information

on workers to help manage the workforce, direct tasks, and set wages. As a result, firms

can now use algorithms to regulate workers’ time and activities more stringently than ever

before. While algorithms can be designed to be neutral to specific demographics, such as

gender, race, or certain age groups, they could evolve into evaluating highly correlated fac-

tors, such as work schedules. Gig workers are becoming increasingly aware that their bosses

are algorithms that prioritize some objectives that may counteract schedule flexibility.1 De-

spite the difficulty in determining the evolution of algorithmic technologies, policymakers and

academics are becoming increasingly concerned with the issues that arise in their applica-

tions. Economists have just started to examine how algorithms affect market outcomes. For

example, Assad, Clark, Ershov and Xu (2020) studies the association between algorithmic

pricing and competition. However, few have looked at the labor implications in the design

of platforms that automate the management and coordination of workers. Thus, there is an

urgent need to better understand the emerging challenges posed by algorithmic technologies

in the labor market.

A prominent example is ride-hailing markets. The proliferation of smartphones and

mobile internet is driving the global demand for ride-hailing services. A ride-hailing platform

provides riders with an economical mode of transportation, such as for daily work commutes,

and allows drivers to create their own work schedules to best fit the job into their lives.

It is well documented in the literature that workers value alternative work arrangements

(Mas and Pallais, 2017). In the ride-hailing industry, Chen, Rossi, Chevalier and Oehlsen

(2019) shows that work schedule flexibility increases driver utility. Moreover, geolocation-

based matching of drivers and riders creates substantial efficiency gains (Liu, Wan and

Yang, 2019). However, work schedules are not treated equally by the platform: some yield

more revenue. Information from drivers, including work schedules, is used in profiling and

automated decision-making.2 Inevitably, an optimizing algorithm rewards “high-performing”

drivers who work long and consecutive hours for the benefit of the platform. However, due to

the lack of information on proprietary algorithms thus far, we have a limited understanding

of how algorithms affect market outcomes. Our paper aims to provide the first empirical

1The documentary The Gig Is Up (2021) reveals how gig work promised freedom for workers but delivered
lower wages and poor working conditions.

2Between 2019 and 2022, multiple lawsuits were filed against ride-hailing platforms in the US and Europe
to gain access to their secret algorithms. See, e.g., Uber Drivers Sue to Gain Access to its Secret Algorithms.
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study of algorithmic wage-setting and its impact on worker behavior and welfare.

First, we argue that ride-hailing companies exercise algorithmic preferential wage-setting,

limiting driver utilization of schedule flexibility. Hourly earnings depend not only on the par-

ticular hour but also on whether the driver works in other hours. Our arguments highlight

one important channel the literature has overlooked: the platform balances demand and sup-

ply through the cross-time elasticity of substitution in labor supply. Most platforms apply

surge pricing to balance demand and supply, which leverages real-time labor supply elasticity,

by increasing prices when demand exceeds supply. However, surge pricing may discourage

demand and reduce transactions if demand is overly elastic. Through implementing a pref-

erential algorithm, the platform can avoid paying high incentive wages when the demand is

overly elastic. Instead, the platform can reward drivers when demand is less elastic—relying

on such algorithms, platforms profit from maximizing total transactions. Because drivers

care about the total of selected values, algorithms can set differential wage rates based on

the driver’s overall work schedule. Thus, with a preferential algorithm, even in hours when

outside options are more attractive, some drivers may still prefer to work because they are

rewarded in other hours. As a result, algorithms leverage cross-time labor supply elasticity

to increase labor supply in hours with driver shortages. We provide a simple example in

Section 2 to sharpen the intuition.

Second, we document significant wage differentials due to work schedules using rich trans-

action data from one leading ride-hailing company in Asia. We show that three main factors

drive the wage differential: high-performing drivers are given more ride requests per hour,

wait fewer minutes for each request, and receive more requests from riders with lower cancel-

lation rates. Next, we examine several alternative explanations documented in the literature

for the US ride-hailing markets (see, e.g., Cook, Diamond, Hall, List and Oyer, 2021).

We rule out alternative explanations of the wage differentials, such as drivers strategically

choosing where to work, strategically accepting or canceling orders, driving faster, and hav-

ing better knowledge of routes. The large wage differential we identify is predominantly due

to algorithmic wage-setting, which penalizes low-performing drivers.

Third, we construct and estimate a dynamic model of drivers’ hour-by-hour labor supply

in a day to quantify the welfare effects of algorithmic preferential wage-setting. We pro-

pose a dynamic equilibrium model of a ride-hailing market similar to Frechette, Lizzeri and

Salz (2019). We further incorporate decisions of the platform in the two-sided market. Our

model accounts for riders’ downward-sloping demand, drivers’ dynamic labor supply, and

the platform’s fare and wage setting. Two market power sources drive the platform’s pricing

decisions: the driver faces alternative time-varying outside options, and the rider has alterna-

tive modes of transportation. Drivers first choose work schedule types and then hourly work
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schedules by solving finite-horizon dynamic discrete choice problems. While drivers can set

their own work schedules, the platform rewards high-performing drivers by assigning them

more frequent and rewarding trips, leading to wage differentials between work schedules.

Combining the estimated labor supply model and the rider demand model, we show how

the platform leverages cross-time elasticity using the preferential algorithm. When ride fares

are fixed in the short term, eliminating the preferential algorithm will decrease labor supply,

resulting in driver shortages for most hours. Our results show that the relation between

wage differentials and labor shortages is not one-to-one. Instead, the platform smooths out

the payment of high incentive wages by leveraging the cross-time elasticity difference.

Next, we show the welfare effects of eliminating the preferential algorithm. In the short

term, eliminating the preferential algorithm will result in drastic loss for both the platform

and the riders. On the other hand, the drivers will enjoy more flexibility in choosing a work

schedule under “fair” pay. In aggregate, platform revenues will decrease by 12.16%, and total

surplus will decrease by 7.16%. The proportion of high-performing drivers will decrease by

11.48% as more drivers switch to being lower performing. For the switchers, the driver

surplus will increase by 3.51%. In the long term, the platform will re-optimize its pricing

strategy, increasing ride fares to mitigate the short-term driver shortage. As a result, the

losses suffered by the platform and riders will be smaller in the long term compared to the

short term, resulting in a total decrease in surplus of 1.42%. We also look at how different

driver demographics are affected if we eliminate the preferential algorithm. We find that

female and older drivers who choose to be high-performing are more likely to suffer from

the policy change. The effect for female drivers in general is ambiguous, because women

are also more likely to be low-performing drivers, who receive a larger welfare gain from

eliminating the preferential algorithm. Non-locals are more likely to suffer a welfare loss if

we eliminate the preferential algorithm, because they are more likely to be high-performing.

Lastly, we investigate what factors determine the effectiveness of the preferential algorithm.

We conduct counterfactuals by alternating key structural parameters. We find that the

platform benefits more from implementing a preferential algorithm when rider demand is

more elastic or when warm-up cost is greater. Meanwhile, the loss of driver surplus with a

preferential algorithm is smaller when demand is more elastic or the warm-up cost is greater.

Related Literature

Our paper is one of the first to study how algorithms affect market outcomes. Rambachan,

Kleinberg, Ludwig and Mullainathan (2020) develops an economic perspective on algorith-

mic fairness and related issues. Calvano, Calzolari, Denicolo and Pastorello (2020) shows
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how algorithmic pricing leads to collusive strategies in an oligopoly model of repeated price

competition. Assad, Clark, Ershov and Xu (2020) shows that AI adoption has a significant

effect on competition by studying Germany’s retail gasoline market. Using rich transaction

data from one of the leading ride-hailing companies in Asia, we provide the first empirical

study of algorithmic wage-setting and its impact on worker behavior and welfare.

Our results add to the labor literature on compensation and incentives in the work-

place. Economists have understood the importance of incentives for decades and made good

progress in specifying how compensation and its form influence worker effort. See Lazear

(2018) for an excellent summary. However, little is known about the compensation and in-

centives provided by new algorithmic technologies. Our paper provides the first empirical

study on how algorithmic wage-setting manipulates the pay structure and alters worker be-

havior. Such analysis is especially important under the context that there has been a rise

in the incidence of alternative work arrangements (Katz and Krueger, 2019). Our results

also add to the discussion on wage differentials. There has been extensive documentation

of wage differentials based on demographics, such as gender and race. Altonji and Blank

(1999) provides a great overview of this literature. Blau and Kahn (2017) surveys the liter-

ature on the gender pay gap. Another small literature studies part-time and full-time wage

differentials. For example, Aaronson and French (2004) studies the joint determination of

hours and wages, exploiting variation in labor hours induced by social security rules. Our

paper is the first to document wage differentials due to different hourly work schedules under

algorithmic wage-setting.

Some earlier papers have used taxi data to investigate individual labor-supply decisions.

Farber (2008) and Crawford and Meng (2011) estimate a structural model of a taxi driver’s

stopping decision, allowing for reference-dependent preferences. However, they do not an-

alyze the industry equilibrium. Instead, similar to Chen, Ding, List and Mogstad (2020)

and Frechette, Lizzeri and Salz (2019), our model studies the overall equilibrium of the ride-

hailing market. We estimate a dynamic labor supply model with driver preferences over

work schedules. There is a growing literature studying the ride-hailing market. Castillo

(2020) studies Uber’s surge pricing using an empirical model of the two-sided market with

riders, drivers, and the platform. Ming, Tunca, Xu and Zhu (2019) also demonstrates that

surge pricing improves rider and driver welfare as well as platform revenues. Instead of

surge pricing, our paper highlights another important channel: the platform balancing of

demand and supply through the cross-time elasticity of substitution in labor supply by the

implementation of preferential algorithms.

Lastly, our empirical strategies follow the empirical industrial organization literature. Our

model builds on the literature on two-sided markets, focusing on how the platform sets prices
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for both sides. See Rysman (2009) for a comprehensive survey. We take this view to the ride-

hailing market, allowing for two sources of market power: driver and rider outside options.

While Rysman (2004) proposes a general setting with oligopolistic competition between

platforms, we focus on one leading platform in Asia. This simplification approximates the

industry structure well and allows us to incorporate important dynamics in drivers’ labor

supply. In estimating rider preferences, we employ an IV approach, similar to Kalouptsidi

(2014), to deal with unobserved factors that may affect demand and rider fare schedules.

In estimating drivers’ preferences, we propose a GMM estimator that integrates the CCP

estimator of Hotz and Miller (1993). We also account for driver unobserved heterogeneity

in estimating the structural parameters in their dynamic discrete choice.

The remainder of the paper is organized as follows. Section 2 proposes a motivational ex-

ample to explain why the platform has incentives to implement a preferential algorithm. Sec-

tion ?? describes the ride-hailing industry in Asia and our data. Section 4 provides reduced-

form evidence of algorithmic wage-setting that favors high-performing drivers. Moreover,

we conduct robustness analysis to exclude alternative explanations. Section 5 describes

an equilibrium model with a dynamic model of drivers’ labor supply. Section 6 discusses

our estimation results, and Section 7 discusses our counterfactual experiments. Section 8

concludes. The Appendix contains all omitted details.

2 Preferential Algorithm

Worldwide, online platforms are accused of implementing preferential algorithms to restrict

the work flexibility of gig workers. For example, Uber Eats’ algorithm gives preference to full-

time workers over part-time workers when assigning orders. Similarly, DoorDash’s algorithm

discourages gig workers from strategically choosing orders. If a worker declines a delivery

order that would take them approximately 12 km away, they may stop receiving further

delivery requests. Furthermore, there are claims that Instacart exercises significant control

over the labor process thereby restricting workers’ autonomy over their time and the work

they can undertake.3 Our paper aims to understand what precisely a preferential algorithm

does and why such an algorithm is employed by platforms. Specifically, we study one of

the leading ride-hailing platforms in Asia, which we refer to as “Platform X” to maintain

confidentiality.4 Platform X’s algorithm grants preferential order assignment to drivers based

3The news report for Uber Eats: Uber gets almost everything it wants in Ontario’s Working ForWorkers
Act; DoorDash: Apps like Uber and DoorDash use AI to determine pay. Workers say this makes it impossible
to predict wages. Instacart: At The Mercy Of An App: Workers Feel The Instacart Squeeze.

4The leading ride-hailing platforms in Asia include Uber, Lyft, Didi, Grab, Gojek, Ola, among others.
With the development of Asia’s residential travel demand, the number of ride-hailing users in Asia grew to
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on their total working hours, particularly during incentivized hours. Below, we elaborate on

how Platform X’s preferential algorithm works in detail.

2.1 Preferential Algorithm in Ride-Hailing

Platform X typically distributes requests to drivers within three kilometers. Within this des-

ignated radius, Platform X gives priority to particular drivers based on their order assignment

scores. Drivers earn points based on the time they spend and the duration they work for the

platform. In the city we are investigating (as of 2018), Platform X’s fare schedules segment

a workday into six intervals. (1) morning 7:00-10:00, (2) midday 10:00-16:00, (3) afternoon

16:00-19:00, (4) evening 19:00-22:00, (5) night 22:00-00:00, and (6) early-morning 00:00-6:59

(next day). The points earned per hour for drivers vary depending on the specific time in-

tervals. Certain intervals are designated as incentivized hours, during which drivers receive

higher points for their work. In the app, drivers have access to the points earning formula,

which provides them with precise information about the number of points they will earn at

different times of the day. On average, drivers earn 0.3 points for each order they fulfill. The

total score of a driver is computed by summing up all the points they have earned during

the previous thirty days.

Figure 1 presents the information visible to the drivers.5 The driver is presented with

their current score, which in this case is 236.6. Subsequently, there is a line indicating the

percentile of their score, stating that the score is “better than 66% of drivers in the same

city”. At the bottom of the screen, there is a line that explains the usage of the score

to the drivers, stating that “the higher the score, the higher priority you will have in order

assignment.” To summarize, drivers are provided with the formula for earning points, possess

full knowledge of their current score, and also understand that the score directly impacts

the priority of order assignment.

Regarding the fare schedules, all the drivers face the same fare schedules on Platform

X. Thus, hourly wage differentials across drivers mainly come from systematic differences in

order assignment. Riders pay a 10 CCY base fare, 0.38 CCY per minute, and 1.9 CCY per

mile for each Platform X Express trip. During the morning hours (7:00-10:00), the per-mile

rate increases to 2.5 CCY, and during the afternoon (16:00-19:00), night (22:00-0:00), and

early-morning (0:00-7:00) hours, the per-mile rate is 2.4 CCY. Drivers receive 79.1% of the

800 million by the end of 2020. Platform X has millions of ride-hailing drivers and serves over one hundred
million people globally, collecting an annual revenue of over $10 billion USD in 2020. Platform X offers
several tiers of operations: express, premium, and luxury. Our study focuses on its express service. Like
UberX in the U.S., express accounts for most of the service provided on Platform X in Asia.

5Due to confidentiality reasons, we exclude all specific firm information. Instead, we present a generic
illustration that precisely replicates the information displayed to drivers on the platform.
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Figure 1: Information Displayed to Drivers

rider fare.6

2.2 Why Implementing a Preferential Algorithm

We will now elaborate on why the platform has a motivation to introduce a preferential

algorithm. First of all, if the platform can apply first-degree price discrimination to both

consumers and drivers, it can maximize its profit to the fullest extent. In such a scenario,

the platform captures the entire surplus from both consumers and drivers, and introducing

a preferential algorithm will not increase the platform’s profit. The preferential algorithm

is effective only in situations where the platform cannot achieve perfect price discrimination

among drivers. In reality, the platform may be able to extract consumer surplus through

mechanisms like surge pricing. However, extracting the entire surplus from drivers is chal-

lenging due to factors such as labor laws or the design of the wage scheme. For instance,

in countries like France, there are regulations requiring a minimum payment for drivers per

ride, resulting in a surplus for drivers.

Figure 2 presents a scenario where the implementation of a preferential algorithm is

profitable for the platform. Panel (a) and (b) represent two distinct time periods, t1 and

t2. In both periods, the platform captures the entire consumer surplus by employing surge

pricing, while providing drivers with a constant wage throughout each time period. The red

line represents the labor supply curve in each time period, while the blue line represents

6The information is obtained from Platform X’s annual report.
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Figure 2: Cross-Time Elasticity Differentials

the demand curve. Assuming, without loss of generality, that the alternative outside option

for drivers has a value of zero at t1. At time period t1, the platform compensates drivers

with a wage rate of w1, leading to a surplus of B1 for the drivers. The platform is unable

to further decrease wage rate at t1 because of minimum wage requirement. At t1, there is

an abundance of drivers willing to work at the wage rate w1. However, in equilibrium, only

L∗1 drivers are able to receive orders and earn a surplus. The platform has the authority to

select which drivers among the available pool will receive orders. This ability to choose drivers

necessitates the implementation of a preferential algorithm, which the platform utilizes to

extract additional surplus from the drivers.

Without a preferential algorithm, the equilibrium wage rate at t2 is w2, determined by

the point of intersection between the demand and supply curves. At time period t1, the

platform earns a profit of A1, while at time period t2, it earns a profit of A2. Therefore, the

total profit for the platform in the absence of a preferential algorithm is A1 + A2, while the

driver surplus amounts to B1 +B2 + F1.

With a preferential algorithm, the platform communicates to drivers that if they work

during time period t2, they will be given priority and receive an order during time period

t1. Hence, the platform can motivate drivers to work during time period t2 without offering

substantial incentive wages. As a result, the platform can lower the wage rate to w′2 during

time period t2 and still sustain the desired level of labor supply, denoted as L′2. Therefore,

with the implementation of a preferential algorithm, the total profit for the platform becomes

A1 + A2 + F1 + F2, and the driver surplus is calculated as B1 +B2 − F2 − F3.

Typically, the platform needs to offer high incentive wages to motivate drivers to work
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more. For instance, at the wage rate w′2 during t2, if the platform intends to increase the

labor supply from L2 to L′2, it would need to provide additional compensation of F2 + F3 to

motivate additional drivers to work. Nevertheless, with the implementation of a preferential

algorithm, the platform no longer needs to offer such incentive wages. Instead, the platform

can prioritize drivers who work during time period t2 for order assignment during time period

t1. Drivers who choose to work at t2 are now compensated by earning a surplus during t1.

The power of implementing a preferential algorithm lies in the presence of an excess supply

of drivers during time period t1 and the platform’s ability to select which drivers will receive

orders in such situations. The effectiveness of the preferential algorithm depends on the

disparity in demand and labor supply elasticity across different time periods, which we refer

to as cross-time elasticity differentials.

The simple theoretical model presented here highlights the incentive of using a preferential

algorithm. The preferential algorithm serves as a means for the platform to extract additional

driver surplus in situations where it is unable to conduct first-price discrimination for drivers.

The preferential algorithm leverages cross-time elasticity differentials to extract additional

driver surplus, while surge-pricing utilizes real-time elasticity to maximize the platform’s

profit. Despite their different mechanisms, the platform achieves higher profit from both

surge-pricing and the preferential algorithm. In Appendix A, we use our theoretical model

to illustrate the contrasting ways surge-pricing and the preferential algorithm operate, as well

as to highlight their potential complementarity. Specifically, we conduct a comparison of the

equilibrium outcomes in four scenarios: without surge-pricing and the preferential algorithm,

with only surge-pricing, with only the preferential algorithm, and with both surge-pricing

and the preferential algorithm.

3 Data

To study the wage differential resulting from the preferential algorithm, we acquire transaction-

level data from the Transportation Bureau of a major city in Asia. We observe all the com-

pleted transactions of all ride-hailing platforms in December 2018 for that city.7 We also

observe drivers’ attributes such as age, gender, and birth location.

For each transaction, we observe the trip’s origin, destination, and distance, as well as

the duration spent on passenger pickup and transportation, and the corresponding payment

received by the driver. The transaction-level data allows us to observe the detailed work

schedules of the drivers and detailed information on the orders they received. Furthermore,

the order details encompassing origin, destination, wait time, pick-up time, and drive time

7The city we study has a population of around eleven million.
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enable us to assess the quantity and quality of orders received by different drivers. Therefore,

we can investigate the underlying factors contributing to drivers’ wage differentials. One

caveat is that while we have data on completed transactions from all ride-hailing platforms,

our main analysis focuses only on Platform X. We focus our main analysis on Platform

X for two key reasons. Firstly, Platform X holds a dominant position in the city under

study, accounting for more than 90% of the market share. Secondly, our data indicates that

drivers rarely multi-home or switch between different platforms, suggesting that platform

competition is almost negligible in our city of study.8 As a result, we focus on Platform X

as the primary subject of our analysis.

Table 1 summarizes our data set. The unit of observation is at the driver-hour level.9

A driver serves, on average, 1.9 orders per hour and earns 50 CCY. The number of orders

ranges from 1 to 9 between the 25th percentile and the maximum value, demonstrating a

significant variation in the number of orders fulfilled by drivers within an hour. For each hour

worked, drivers generally only spend half the time transporting riders. On average, drivers

spend 10 minutes picking up riders and another 19 minutes waiting for orders. Considering

that a substantial amount of time is spent in picking up riders and waiting for orders, having

a higher priority in order assignment plays a significant role in improving a driver’s hourly

wage.

Table 1: Summary Statistics (Driver-Hour)

Mean Std. Dev. Min 25 Pctl Median 75 Pctl Max

Hourly Wage (CCY) 49.98 24.52 0 32.83 47.42 62.74 286.86

Earning Time (minutes) 30.60 12.01 0 21 31 40 60

Pickup time (minutes) 10.62 6.67 0 6 10 15 60

Idle Time (minutes) 18.78 14.32 0 6 17 29 60

Number of Orders 1.89 1.11 0 1 2 3 9

Distance (km) 14.11 7.41 0 8.78 13.1 18.2 94.13

Number of Observations 4,182,318

Table 2 summarizes the driver characteristics. There are 40, 104 unique drivers in our

data, among which 2.7% are female drivers, and 37.4% are local drivers. We define local

drivers as drivers with local household registration permits.10 Household registration permits

8Appendix F shows a detailed analysis regarding multi-homing.
9The unit of observation in our raw database is at the driver-rider-order level. We primarily concentrate

on weekdays (a total of 21 days) due to variations in supply, demand, and fee schedules between weekdays
and weekends. Following the literature, we conduct our main demand estimation and counterfactual analysis
at the driver-hour level. For more details on how we derive the driver-hour level data from the raw data,
please refer to Appendix E.

10Household registration permits are issued by the government, and indicate the particular area a person
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have a profound impact on residents’ capacity to buy houses, access schools and childcare

facilities, thereby influencing their available opportunities in the job market. Table 2 shows

that drivers work a median of 13 days out of the 21 workdays. There is considerable het-

erogeneity across the number of days each driver works, ranging from 5 to 19 days between

the 25th and 75th percentiles. Moreover, there is substantial variation in the number of work

hours per day, with the 25th percentile driver working 4.8 hours, while the 75th percentile

driver works for 10.5 hours.

Table 2: Summary Statistics of Driver Characteristics

Characteristic Mean Std. Dev. Min 25 Pctl Median 75 Pctl Max

Age 37.29 8.24 21 31 37 43 61

Work Days 12.02 7.03 1 5 13 19 21

Daily Work Hours 7.61 3.59 1 4.75 8.09 10.47 18

Compared to Uber data from the US market, the summary statistics of drivers working

for Platform X in our city of study are substantially different. For instance, according to

Cook, Diamond, Hall, List and Oyer (2021), 27.3% of Uber drivers are women. However, just

2.7% of the drivers in our data are female. Additionally, our drivers dedicate significantly

more time to their work, averaging around 7.6 hours per day, while Uber drivers usually

work approximately 3 hours per day. The substantial difference in working hours may be

attributed to the preferential algorithm discussed in this study.

High-Performing and Low-Performing Drivers

Section 2.1 provides a comprehensive explanation of the preferential algorithm used by Plat-

form X. While the platform’s assigned driver scores are not directly observable in our data,

we can infer the historical driving performance of each driver from the transaction data since

we have access to all completed transactions.

We first verify whether working longer hours, particularly during incentivized hours, leads

to increased order assignment priority and subsequently higher hourly wages, as exlained in

Section 2.1. We regress the hourly wage of a driver on the total number of hours worked in a

month and the percentage of incentivized hours worked, controlling for day, hour, and oper-

ation area fixed effects. According to the interviews with drivers and engineers at Platform

X, during our study period, mid-day and night hours (starting from 7 PM onwards) were

identified as incentivized hours. Table 3 shows the results. Generally, drivers who work more,

especially during incentivized hours, earn a higher hourly wage than other drivers. Column

is from, in which the registrant is entitled to benefits such as hospitals, schools, or land-purchasing rights.
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(2) of Table 3 shows that working one additional hour in a month increases a driver’s hourly

wage by 0.3 cents. Given that the 25th to 75th percentiles of drivers work 27 to 172 hours,

their hourly wage gap is 0.435 CCY or 0.87% of the average hourly wage. A more important

feature of higher hourly wages is the fraction of incentivized hours worked. Allocating 1%

more of work time to incentivized hours increases hourly wage by 0.187 CCY. Given that

the 25th to 75th percentile drivers spend 55% to 72% of their work time on incentivized

hours, respectively, their hourly wage gap is 3.2 CCY or 6.4% of the average hourly wage.

The findings indicate that the preferential algorithm employed by Platform X aligns with its

description. Drivers who put in longer hours and work more during incentivized hours are

indeed given priority in order assignments, resulting in a higher hourly wage for them. In Sec-

tion 4, we thoroughly investigate how the preferential algorithm drives this wage differential

and eliminate alternative explanations.

Table 3: Factors Correlated With Hourly Wage

Hourly Wage (1) (2)
# of Work Hours in month 0.003*** 0.003***

(0.000) (0.000)

% Incentivized Hours 18.724***
(0.170)

Constant 54.918*** 39.201***
(0.126) (0.190)

Observations 4,182,331 4,182,331

R-squared 0.040 0.043

Notes: We control for day-hour fixed effects, origin district fixed
effects, and destination district fixed effects. Standard errors are
in parentheses. *** p<0.01.

One computational challenge arises from the fact that, for each hour, a driver has the

option to choose whether to work or not. As a result, the number of potential driver work

schedules on any given day reaches 224. This vast number of possible driver statuses is com-

putationally impractical for our model estimation and counterfactual analysis. Therefore,

we explore the possibility of clustering drivers into different types based on their historical

working performance to effectively reduce the number of potential driver statuses.

We implement machine learning algorithms to cluster drivers based on their hourly wages,

work schedule, and other observed characteristics of drivers.

The findings indicate that we can primarily classify drivers into two distinct types, and

this result is robust to various specifications.11 The first type comprises high-performing

11Online Appendix H describes the machine learning algorithm we use to cluster drivers.
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drivers, who can also be perceived as committed or full-time drivers. The second type

includes low-performing drivers, who can also be perceived as non-committed or part-time

drivers. Based on the analysis, we formally classify the two types of drivers as follows: A

driver is considered high-performing if they worked for at least two consecutive hours during

incentivized hours (midday or night) on a minimum of 8 out of the 21 workdays. Conversely,

a driver is classified as low-performing if they do not meet these criteria.12 Throughout all

our subsequent analyses, we use the terms “H-type” and “L-type” to represent the status

of drivers as high-performing and low-performing, respectively.

Table 4 summarizes the characteristics of high-performing and low-performing drivers.

There are 23, 712 high-performing drivers and 16, 392 low-performing drivers. Panel I reports

the drivers’ characteristics. High-performing drivers are more likely to be non-local drivers

and male drivers. Women account for 2.2% of the high-performing drivers and 3.5% of the

low-performing drivers. Non-locals account for 69% of the high-performing drivers and only

53% of the low-performing drivers. The average age is comparable between high-performing

and low-performing drivers. Panels II and III report driver performance. On average, high-

performing drivers work more, averaging 17 out of 21 workdays, while low-performing drivers,

on average, work 5 out of 21 workdays. In any given hour, conditional on working, high-

performing drivers have more passenger-service time (30.7 minutes versus 29.3 minutes) and

spend less time waiting for orders (18.6 minutes versus 20.4 minutes). High-performing

drivers finish more orders (1.9 orders versus 1.74 orders) and earn more (50.4 versus 46.5

CCY per hour) compared to low-performing drivers.

4 Reduced-Form Evidence

In this section, we first provide evidence to show that high-performing drivers earn a higher

hourly wage. We then investigate the factors driving the wage differential. Last, we rule

out alternative explanations for the observed wage differential between high-performing and

low-performing drivers, including strategically choosing where to work, strategically selecting

and canceling orders, driving faster, and having a better knowledge of routes.

12We performed various robustness checks by changing the threshold of being high-performing drivers.
For example, we changed the required number of days from 8 to 9, 10, 11, etc., out of 21 workdays; we
put further restrictions on the total number of hours worked per month at various levels. Reduced-form
results in Section 4 are robust to these definitions. As explained in the main context, the key feature of
high-performing drivers is the percentage of hours worked consecutively in incentivized hours. Because of
the high fixed cost of starting to work, consecutively worked hours during incentivized hours are highly
correlated with the total number of hours worked. This may help explain why the two criteria we use in the
main context are robust to all the variations mentioned here.
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Table 4: High/Low-performing Driver Characteristics

High-performing Low-performing
(1) (2)

Panel I: Driver/Vehicle Characteristics
% femal 2.2% 3.5%
% non-local 69% 53%
Age 37.2 37.4

Panel II: Performance (in a month)
Work Days 17 5
Work Hours 159 26
# of orders 301 46
Monthly Revenue 7,985 1,202

Panel III: Performance (in an hour)
Work Time 30.7 29.3
Pickup time 10.7 10.2
Idle Time 18.6 20.4
# of orders 1.90 1.76
Hourly Revenue 50.4 46.5
# of drivers 23,712 16,392
Share of Drivers 59.1% 40.9%

4.1 Wage Differential

First, conditional on working in the same hour, we test whether high-performing drivers

earn more compared to low-performing drivers. We regress the hourly wage of a driver on an

indicator of being high-performing and controlling for day-hour, origin, and destination fixed

effects. Table 5 shows a significant difference in hourly wage between high-performing and

low-performing drivers. High-performing drivers earn 3.8 CCY or 8.2% more hourly than

their low-performing counterparts. The result is very robust, with or without controlling for

various fixed effects.13

Given that high-performing drivers earn significantly higher hourly wages, we investi-

gate what factors drive the wage differential. We study the characteristics of orders that

high-performing and low-performing drivers receive. For example, we evaluate the average

distance of their orders and how often the rider cancels the order. We also compare the

number of orders, the amount of idle time, and the time spent serving the customer between

the two types of drivers. Table 6 shows the results. Column (1) shows that conditional on

working in the same hour, high-performing drivers receive more orders than low-performing

13Appendix K reports IV regression results. We show that with changes in Precipitation and Air Quality
Index as instrument variables, we find a larger wage gap between high-performing and low-performing drivers.
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Table 5: Wage Differential: High-performing versus Low-performing

Dependent Variables Hourly Wage
(1) (2) (3)

High-performing 3.886*** 3.794*** 3.851***
(0.0397) (0.0393) (0.0391)

Constant 46.49*** 46.57*** 47.24***
(0.0376) (0.0372) (0.0701)

Day-Hour FE Y Y
Origin FE Y
Destination FE Y

Observations 4,182,328 4,182,328 4,182,328
R-squared 0.002 0.039 0.050

Notes: Standard errors in parentheses. *** p<0.01

drivers. On average, high-performing drivers receive 0.125 more orders or 7.1% more every

hour. Second, orders assigned to high-performing drivers are 2.8% less likely to be canceled

by riders (column 2).14 Because high-performing drivers get assigned more orders every hour,

they also drive 0.748 more kilometers and 5.4% more time carrying riders in an hour (column

4).15 More importantly, high-performing drivers spend 10.5% less time waiting for orders

(column 5). This result is consistent with our argument in Section ?? that the algorithm

prioritizes high-performing drivers for better order assignments.

In summary, Table 6 shows that three main factors are driving the wage differentials

between high-performing and low-performing drivers. High-performing drivers are given

more rides from the platform, waste less idle time waiting for orders, and receive more

orders from higher quality riders (lower probability of rider-initiated cancellation). As the

platform’s algorithm determines the assignment of orders, we hereafter term the systematic

difference in the quantity and quality of order assignments based on work schedule (high-

performing versus low-performing) as algorithmic preferential wage-setting.

14Our main analysis throughout this paper uses data on completed transactions. Our data includes
information on canceled orders in the first ten days (from December 1st to December 10th, 2018). We use
data on completed transactions and canceled orders for all regressions involving cancellation rates. Therefore,
the number of observations differs from that of other regressions.

15Gaineddenova (2021) shows that drivers prefer more expensive trips with a shorter pickup distance,
using data from a decentralized ride-hailing platform.
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Table 6: Driving Forces of Wage Differential

Dependent Variables # Orders Cancellation Rate Drive Dist Earning Time Idle Time
(Rider)

(1) (2) (3) (4) (5)
High-performing 0.125*** -0.0023*** 0.748*** 1.579*** -2.140***

(0.0018) (0.0004) (0.0003) (0.0187) (0.0221)

Constant 1.468*** 0.0894*** 12.85*** 32.35*** 17.04***
(0.00313) (0.0005) (0.0212) (0.0334) (0.0395)

Mean of Low-performing 1.76 (orders) 8.2% 13.4 (km) 29.3 (min) 20.4 (min)

High-performing compared
to Low-performing

7.1% -2.8% 5.6% 5.4% -10.5%

Observations 4,182,318 4,815,026 4,182,318 4,182,318 4,182,318
R-squared 0.080 0.006 0.045 0.100 0.115

Notes: In all columns except for column (2), we use completed transactions for the analysis. Completed transactions are
available from Dec. 1, 2018 to Dec. 31, 2018. In column (2), we also include canceled orders to compute rider cancellation
rates. Information on canceled order is available from Dec. 1, 2018 to Dec. 10, 2018. Standard errors are in parentheses. All
specifications control for day-hour fixed effects, origin district fixed effects, and destination district fixed effects. *** p<0.01

4.2 Rule Out Alternative Explanations

There could be alternative explanations for the wage differentials between high-performing

and low-performing drivers. Rather than having the algorithm prioritize different work

schedules when assigning orders, some may argue that drivers make decisions endogenously,

resulting in the observed wage difference. For example, Cook, Diamond, Hall, List and

Oyer (2021) finds that the gender earnings gap amongst drivers can be entirely attributed

to three factors: experience on the platform (learning-by-doing), preferences and constraints

over where to work (driven largely by where drivers live and, to a lesser extent, safety), and

preferences over driving speed. To provide a robustness check for our findings, we consider

four alternative explanations and use our data to prove that such alternative explanations are

unlikely to be true in our context. First, high-performing drivers may have better knowledge

of the popular rider pickup areas (hot spots) and get more orders. Second, high-performing

drivers may learn how to reject and cancel rides strategically. Third, high-performing drivers

may drive faster than others and earn a higher hourly rate. Fourth, high-performing drivers

may know the streets better and choose better routes than low-performing drivers.

High-Performing Drivers Strategically Choose Where to Work

First, we explore whether high-performing drivers have better knowledge of hot spots, and

hence are strategically choosing where to work and earn more hourly.16 There are eight dis-

16For example, Haggag, McManus and Paci (2017) finds that New York taxi drivers accumulate
neighborhood-specific experience, which helps to find riders.
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tricts in the city we study. We first examine where the high-performing and low-performing

drivers work and whether they tend to pick up / drop off clients in different areas. Ta-

ble 7 suggests no substantial difference between the origin or destination districts where

high-performing and low-performing drivers work.

Table 7: Active Area for High-performing and Low-performing Drivers

Origin Destination

District
Low-
performing

High-
performing

Low-
performing

High-
performing

1 7% 7% 7% 7%

2 9% 8% 9% 8%

3 20% 22% 21% 23%

4 7% 7% 7% 7%

5 16% 15% 15% 14%

6 10% 11% 10% 11%

7 16% 15% 16% 15%

8 16% 15% 15% 13%

Total 100% 100% 100% 100%

To better control for location-fixed effects, we manually divide the eight districts into

even finer 1km × 1km grids. Because we observe the coordinates of each pick-up and

drop-off location, we can accurately place trip origins and destinations into each of the fine

grids. Re-running our main regression with day-hour and grid fixed effects, column (2)

of Table 8 reports the result, which is close to our main result in column (1).17 It shows

that the wage differential between high-performing and low-performing drivers cannot be

explained by high-performing drivers picking up or dropping off passengers from certain

locations or neighbourhoods. We further divide each hour into four 15-minute intervals as

a robustness check. Instead of controlling for day-hour fixed effects, we control for day-

hour-15minute fixed effects. With a finer measure of location and time-fixed effects, we are

essentially comparing drivers who work in the same location at the same time. The only

difference between the drivers is their performance level, which is determined by their past

work schedules. Column (3) reports the result controlling for day-hour-15minute and grid

fixed effects, and column (4) reports the result controlling for day-hour-15minute-grid fixed

effects. The results in all of the robustness checks are close to our benchmark result in

column (1). Thus, knowledge of hot spots and strategically choosing where to work is an

17Column (1) of Table 8 is identical to column (3) of Table 5, where we control for origin, destination, and
day-hour fixed effects.
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unlikely explanation for the wage differential between high-performing and low-performing

drivers.

To mitigate potential biases in driver selection based on unobservable characteristics, we

have employed instrumental dummy variables: the rate of change in precipitation and air

quality index (AQI) in the driver’s hometown city between 2017 and 2018. The selection of

drivers based on these variables is not influenced by the drivers’ unobserved characteristics.

These weather variables satisfy the two conditions required for valid instrumental variables

(IVs). Firstly, the occurrence of precipitation and changes in air pollution may be correlated

with a driver’s decision to become a high-performing driver, as suggested by (Miguel et

al., 2004). For instance, alterations in precipitation and air pollution might motivate more

drivers to leave their hometowns and become high-performing drivers in the focal city under

study. Secondly, the variation in weather conditions in a driver’s hometown should not

directly impact the driver’s hourly rate or order distribution in the city being studied. The

IV results are presented in column (5), revealing a more significant wage differential between

high-performing and low-performing drivers. For further details and additional IV results,

please refer to Section K.

Table 8: Wage Differentials with Finer Grids

Dependent Variables Hourly Wage (OLS) IV
(1) (2) (3) (4) (5)

High-Performing 3.850*** 2.704*** 2.705*** 2.731*** 8.99***
(0.0391) (0.0453) (0.0448) (0.0448) (0.9614)

Constant 47.24*** 21.38 23.90 47.56*** 41.85***
(0.0701) (22.75) (22.51) (0.0427) (0.8755)

Time Controls:
Day-Hour Y Y
15Minute Y
Location Controls:
Origin/Destination Y
Grid Y Y
Grid-15Minute Y Y

Observations 4,182,318 3,160,528 3,160,528 3,160,528 3,160,528
R-squared 0.050 0.075 0.094 0.097 (omitted)

Notes: Standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1

The observation gap between Column (1) and Columns (2)-(5) arises from drivers

who have not been active in the last hour and therefore lack grid information.
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High-Performing Drivers Strategically Cancel Orders

Second, the literature shows that more experienced drivers learn how to strategically reject

and cancel rides, hence earning more. To examine whether such a mechanism exists in our

data, we regress the probability of a driver canceling an order on driver type and control for

day-hour, origin, and destination fixed effects. Results in column (1) of Table 9 show that, if

anything, high-performing drivers have a lower cancellation rate than low-performing drivers

in our data. The robustness check results, controlling for finer location and time-fixed effects,

remain consistent with these findings. It is very difficult for drivers to cancel an order on

Platform X , which may help explain why Platform X drivers behave differently from Uber

drivers described in Cook, Diamond, Hall, List and Oyer (2021). Because high-performing

drivers have a lower probability of canceling an order, it is unlikely that the higher hourly

wage of high-performing drivers is caused by drivers strategically rejecting and choosing rides

in our case.

High-Performing Drivers Drive Faster

Third, some drivers may drive faster than others, hence completing more trips and earning

a higher hourly wage. We examine whether high-performing drivers drive faster than low-

performing drivers by regressing the average drive speed per hour on an indicator of being

high-performing. We continue to control for day-hour, origin, and destination fixed effects.

Column (2) of Table 9 shows the results. While we do find that high-performing drivers

drive slightly faster (0.5%) than low-performing drivers, the 0.5% faster-driving speed is

insufficient to explain the 8% wage differential we find in our main analysis. This 0.5%

faster-driving speed only converts into an extra 0.24 CCY per hour,18 thus explaining very

little of the 3.8 CCY (or 8%) wage differential between high- and low-performing drivers.

High-Performing Drivers Know the Routes Better

Lastly, some may argue that high-performing drivers know the streets better; hence, high-

performing drivers may use shortcuts or less congested routes to their benefit. As our dataset

contains only the origin and destination of each ride, we do not observe the exact route chosen

by the driver. However, based on our interviews with Platform X drivers and engineers, we

find that drivers mostly follow the GPS-recommended route given by the Platform X app,

18The average driving speed for a low-performing driver is 24.63 km/h. Thus, by driving 0.5% faster,
high-performing drivers drive 0.12 km more per hour. The average ride fare is about 2 CCY/km. Therefore,
assuming that the extra 0.12 km is entirely used in carrying a rider without any time wasted, waiting for
and picking up customers, then 0.12 ∗ 2 = 0.24 CCY. Therefore, this 0.5% faster-driving speed only converts
into an extra 0.24 CCY per hour.
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Table 9: Driver Cancellation and Driver Speed

Dependent Variables Probability of Cancellation Driving
(by Driver) Speed

(1) (2)
High-performing -0.0062*** 0.1313***

(0.0002) (0.0194)

Constant 0.0365*** 0.410***
(0.0003) (0.0006)

Mean of Low-performing 3.4% 24.63 (km/h)

High-performing compared
to Low-performing

-18.2% 0.5%

Observations 4,815,026 4,168,889
R-squared 0.004 0.089

Notes: Standard errors are in parentheses. We control for day-hour fixed effects, origin
district fixed effects, and destination fixed effects. *** p<0.01

as riders may file complaints to Platform X if drivers do not follow the suggested route.

Therefore, drivers have less incentive to deviate from the recommended route.

To summarize, we examine four alternative explanations for the wage differential between

high-performing and low-performing drivers: that high-performing drivers may strategically

choose where to work, strategically select and cancel orders, drive faster, and have a better

knowledge of routing. However, upon more in-depth analysis within our data, we rule out

all four potential explanations as likely to explain the observed wage differential between

high-performing and low-performing drivers.

5 Model

Given that the preferential algorithm prioritizes specific drivers based on their work schedule

for order assignments, the labor supply decision is now subject to the rules specified by the

preferential algorithm. To understand who benefits and who loses under such a preferential

algorithm, we propose a dynamic equilibrium model of a ride-hailing market, similar to

Frechette, Lizzeri and Salz (2019). In our model, each driver decides when and how long to

work, depending on the wage rates and reservation values.

We model the decisions of market participants for one day. At each hour of the day,

there is a demand curve for rides, Dt(Pt). Given this demand curve, the platform makes two

types of decisions. The platform first determines the price to charge riders, Pt. We allow
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for dynamic pricing and thus allow prices to vary across different times of the day. Second,

the platform’s algorithm allocates ride orders to each driver. The algorithm distinguishes

between two types of drivers: high-performing and low-performing. High-performing drivers

commit to working consecutively for at least 2 hours during incentivized hours between 10

AM–4 PM and 7 PM–6 AM the next day. Low-performing drivers make no work schedule

commitments. A driver i first decides whether to be a high-performing or low-performing

driver type τ ∈ {H,L}. We assume that drivers choose their type (H or L) at the start of

the day, and drivers cannot change their worker type throughout the day. Conditioning on

the choice of being H-type or L-type, each driver chooses whether to work for each hour

of the day. The problem is dynamic, because whenever a driver starts working or resumes

working after a break, there is a fixed “warm-up” cost. If the driver chooses to be the high-

performing type, the dynamic problem is under the constraint that working hours need to

satisfy certain work schedules. Otherwise, the problem is unconstrained.

Our model prioritizes within-day dynamics over day-to-day dynamics to emphasize the

major trade-off involved in drivers’ standard decision-making process. According to our

interviews with drivers, they tend to maintain a consistent working habit from day to day.

This behavior may be attributed to the fact that initial introduction of ride-hailing in the

focal market was back in 2014, leading to drivers establishing their daily patterns by the time

of our study in 2018, whether as full-time or part-time drivers. Our data also validates this

consistency in their hourly driving patterns. While it is technically feasible to incorporate

day-to-day dynamics into our existing one-day model, doing so presents significant challenges

due to data limitations and computational complexities. As a result, we leave this to future

research. Investigating day-to-day dynamics could offer interesting insights into how drivers

make choices among platforms and whether they opt to become ride-hailing drivers. As per

our interviews with drivers, day-to-day dynamics are typically established within a short

period. For individuals who have not yet settled into a consistent routine, choosing full-

time ride-hailing work requires making arrangements with family members, such as finding

suitable daycare for their children. Once drivers have settled into their day-to-day dynamics,

they revert to the within-day dynamics as described in our study.

We use bold typeface to denote vectors containing values for each hour of the day. For

example, P denotes all prices for all t = 1, · · · , 24. The sequence of wage rates is W τ , which

is determined by the platform’s pricing decisions P and the algorithm deciding which driver

receives the orders.
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5.1 Drivers’ Dynamic Labor Supply

Drivers first choose either to be a high-performing or low-performing type. Low-performing

drivers solve an unconstrained dynamic discrete choice problem of when to work. Per our

discussion in Section 3, high-performing drivers are required to work consecutively for at

least 2 hours during incentivized hours between 10 AM–4 PM and 7 PM–6 AM the next

day. Besides fulfilling the required working hours, a high-performing driver makes an hourly

choice of whether or not to work. If a driver chooses to be high-performing, the driver chooses

which minimum requirement to satisfy in advance. For example, driver A may choose to

be a high-performing driver by committing to work between 10 AM and 12 PM. Between

10 AM and 12 PM, driver A will be active on the app with probability 1, and at any other

time of the day, driver A can freely choose whether to work or not. We assume that drivers

choose their work type (H or L) at the start of the day, and drivers cannot change their

type during the day. A low-performing driver B does not commit to any work schedule. Ex

post, even if driver B ends up working long hours, including from 10 AM to 12 PM, driver

B would still be considered a low-performing type.

Sixteen possible work schedules satisfy the high-performing requirement.19 Work status

is summarized by different work schedules, L ≡ {0} and H ≡ {1, · · · , 16}. The choice of

work schedule is a simple logit model that motivates

N j = N · exp(EV j)∑16
k=0 exp(EV k)

,

where N is the total number of potential drivers, and EV j represents the expected value

of choosing work schedule j.20 Therefore, the total number of high-performing drivers is

NH =
∑16

k=1N
k, and the total number of low-performing drivers is NL = N0.

After deciding whether to be H-type or not, drivers then find the optimal solution to

their dynamic discrete choice problem by choosing whether to work at each time t. Drivers

observe the warm-up cost κ, sequence of hourly wages W τ , and reservation values O. Low-

performing drivers, at each time t, compare the hourly wage plus the difference in expected

future values to the value of their outside option. Then, the driver decides whether to work

at time t. It is a dynamic problem, because if the driver chooses to work at time t and

continues working at t+ 1, the driver would not need to pay an extra warm-up cost at t+ 1.

Hence, the expected value for the future at time t is higher if the driver chooses to work

19For example, if a driver chooses to satisfy the high-performing requirement by working 10 AM–12 PM,
then the driver is categorized as schedule 1. If a driver chooses to satisfy the high-performing requirement
by working 11 AM–1 PM, then the driver is categorized as schedule 2, etc.

20We use the number of unique drivers in the 21 workdays as the number of potential drivers in our model.
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than if the driver chooses not to work at time t. High-performing drivers have to work with

probability 1 during committed hours. At any other time of day, high-performing drivers

solve the same dynamic discrete choice problem by comparing the hourly wage plus the

difference in expected future values to their outside option and decide whether to work at

each time t.

Specifically, at the beginning of hour t, a driver receives a random draw from the wage

distribution and another draw from the outside option:

U τ
1t = W τ

t︸︷︷︸
preferential wage rate

+ σ · ε1t,

U τ
0t = Oι

t︸︷︷︸
outside option value

+ σ · ε0t,
(1)

where Oι
t represents the reservation value from working on something else, and ε·t represents

the error term that is Type-I extreme value distributed. Differences in reservation values

among various groups of drivers may impact their labor supply decisions. To account for

this, we consider the presence of unobserved heterogeneity in drivers’ reservation values.

Specifically, we have Oι
t = Ot + ηι,t, where Ot is the average reservation value per hour,

and ηι,t is driver-specific unobserved heterogeneity representing their preference for certain

parts of the day. According to our survey of drivers, these preferred parts often closely align

with the intervals on Platform X’s fare schedule.21 Therefore, we consider seven unobserved

heterogeneity types that align with these intervals. For the benchmark driver group 0, the

unobserved heterogeneity term η0t is set to 0 for all time periods t. In contrast, driver group

1 has an unobserved heterogeneity term η1t equal to η1 during the time range from 7 AM

to 10 AM and 0 for all other time periods. Similarly, driver group 2 shows an unobserved

heterogeneity term η2t equal to η2 during the period from 10 AM to 4 PM.

There is a fixed warm-up cost κ > 0 to start working if the driver took the outside option

in the previous hour. This is to rationalize that drivers often drive for consecutive hours.

The value function for the low-performing driver at any time t that is not the first or the

last period is derived as

V L
t =


WL
t + σ · ε1t + βEV L

1t+1 if at = 1 & at−1 = 1,

WL
t − κ+ σ · ε1t + βEV L

1t+1 if at = 1 & at−1 = 0,

Oι
t + σ · ε0t + βEV L

0t+1 if at = 0.

21Details of the fare schedules are explained in Section 2.1.
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Here, WL
t represents the wage rate for the low-performing driver at time t, κ is the warm-

up cost, and σ is the scale parameter. The terms EV L
1t+1 and EV L

0t+1 denote the expected

values if the driver chooses to work or not to work, respectively, at time t. The labor supply

decision of the driver is denoted by at, where at = 0 indicates not working at time t. The

value functions for all time periods of both low- and high-performing drivers can be found in

Appendix B. We solve the dynamic discrete choice problems through backward induction.

Individual driver choices, in turn, generate the aggregate labor supply for each hour by driver

type:

NH
t =

16∑
j=1

N j × Pr(work in hour t|work schedule j),

NL
t = N0 × Pr(work in hour t|work schedule 0),

where the conditional choice probabilities Pr(·|·) are the solutions to the above-mentioned

dynamic discrete choice problems. We denote the type-specific labor supply as

NH
t = NH

t (WH ;θ) = NH
t (P , s;θ),

NL
t = N L

t (WL;θ) = N L
t (P , s;θ).

5.2 Demand for Rides and the Platform’s Problem

Riders only demand driver-earning hours. The number of earning hours demanded is Dt(Pt),

where Pt is the hourly serving rate that the platform posts at hour t. For simplicity, we

assume that demand for rides is downward-sloping and iso-elastic:

Qt = Dt(Pt) = δtP
−ε
t , (2)

where ε is the constant demand elasticity. The demand shifter δt includes daily weather

indices, such as precipitation and temperature.

The platform takes demand shifter δt and demand elasticity ε as given and chooses prices

and assignments to balance the demand and supply of rides to maximize platform profit. Let

st be the fraction of orders assigned to high-performing drivers at time t, where st ∈ [0, 1].

The platform’s choice of (P , s) maximizes its own payoff:
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max
(P ,s)

r
∑
t

PtDt(Pt)

s.t. Dt(Pt)st ≤ λHt NH
t (P , s;θ)

Dt(Pt)(1− st) ≤ λLt N L
t (P , s;θ).

(3)

Here, r represents the platform’s commission rate, while the drivers receive 1− r portion of

the ride fare. Dt(Pt) is the demand for rides measured in earning hours, and N τ
t represents

the total number of working hours (active app hours) provided by the drivers. We have λτt as

the technological constraint restricting the relationship between working hours and earning

hours, where λτt ∈ [0, 1]. For example, λτt = 0.5 means that for every 15 minutes driving

with a rider, a typical driver spends another 15 minutes on pick up, payment, etc. If λτt = 1,

there is no time spent on pick up.22 We have idle drivers waiting for trip requests when one

of the two inequalities is unbounded. In our empirical analysis, we set the commission rate

r equal to 20%.23

Given the choice of prices and assignments (P , s), the platform effectively determines

the sequence of wages (WH , WL). Each high-performing and low-performing type expects

to receive a wage rate:

WH
t = (1− r)PtDt(Pt)st

1

NH
t

,

WL
t = (1− r)PtDt(Pt)(1− st)

1

NL
t

,
(4)

where 1 − r is the revenue share that the driver receives; st represents how the algorithm

favors high-performing drivers (the proportion of orders assigned to high-performing drivers).

6 Estimation

6.1 Demand Estimation

We first estimate rider demand for service time for each hour h. We consider each hour

a different market and aggregate our data to the day-hour level. We obtain the logarithm

of total earning time (Qt) and the logarithm of average hourly ride fare (Pt). Demand

22We obtain the value of the technological constraint from the data. We compute the driving time as a
fraction of driver work time in each day-hour for high-performing and low-performing drivers. Then, we
calculate the maximum as the technological restriction.

23According to Platform X’s IPO document, the national average commission rate is 20.9%. In our survey,
most drivers suggest that the commission rate is about 20%. Therefore, we use r = 0.2 in our empirical
analysis.
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parameters are estimated through:

logQt = log δh − ε logPt + eh. (5)

Our demand estimation suffers from classic supply-demand endogeneity. The platform may

set a higher price when there is a higher demand shock in the market. Therefore, our

OLS estimates may be biased. Similar to Kalouptsidi (2014), we use the number of cars in

competing ride-hailing companies on the given day as our supply-side instrumental variable.

Suppose the hourly demand shock eh is instantaneous with an expected value of zero ex ante.

In that case, the number of cars in competing ride-hailing companies is not correlated with

hour-level demand shocks. On the other hand, the number of cars competitors operate is

negatively correlated with the ride fare that the platform can charge. Therefore, the number

of cars in competing ride-hailing companies is a valid instrument.

Table 10: Demand Estimation

Dependent Variables ln(Service Hours)

(1) (2) (3) (4)
OLS OLS OLS IV

ln(Hourly Wage) -5.151*** -5.158*** -0.767*** -1.186**
(0.0743) (0.0737) (0.152) (0.553)

Rain -0.0020 -0.0005 -0.0006
(0.002) (0.0007) (0.0007)

Temperature 0.0127*** 0.0094*** 0.0098***
(0.0033) (0.0011) (0.0012)

Constant 32.12*** 32.06*** 10.62*** 12.69***
(0.350) (0.348) (0.752) (2.736)

Hour FE Y Y
Day of Week FE Y Y

Observations 744 744 744 744
R-squared 0.866 0.869 0.988 0.988

Notes: Standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1

Table 10 reports demand estimates for the city of study. Column (1) reports the estimates

without fixed effects. Column (2) reports estimates with the weather as a demand shifter.

Column (3) further includes day and hour fixed effects. Column (4) reports our IV estimates.

After controlling for hourly fixed effects and day-of-the-week fixed effects, column (3) reports

a demand elasticity of −0.767. The estimated demand elasticity is much smaller with fixed

effects than the estimates in the näıve OLS regression. Our IV estimates in column (4) are

similar to those with fixed effects in column (3). The IV estimates show that when the
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hourly ride fare increases by 1%, the total demand for service time decreases by 1.2%. We

use the IV estimate as the value of demand elasticity in our counterfactual analysis. Our

estimated demand elasticity of −1.186 is comparable to the values estimated in the literature.

Frechette, Lizzeri and Salz (2019) estimates an elasticity of −1.225 for New York City’s taxi

market. Cohen, Hahn, Hall, Levitt and Metcalfe (2016) relies on the surge pricing algorithm

and estimates a smaller price elasticity for UberX (between −0.4 and −0.6).

6.2 Estimation of Structural Parameters

Our model with unobserved heterogeneity is point-identified using conditional choice proba-

bilities in drivers’ dynamic labor supply. Appendix C contains the details of our identification

arguments.

Next, we estimate the structural parameters: θ ≡ ({Ot}, κ, σ). {Ot} is the reservation

value at each time t, which includes the average reservation value Rt and the unobserved

heterogeneity {ηs,t}. κ is the warm-up cost of starting to work, and σ is the normalization

term of EVT1 errors (the scale parameter). We follow Arcidiacono and Miller (2011) in esti-

mating the unobserved heterogeneity, and we explain the details of our estimation procedure

in Appendix C.2.

Table 11 shows the estimation results. The first row shows the estimated population

density of each driver group. We can see that three main driver groups dominate: group 3

with probability 0.42, group 2 with probability 0.18, and group 4 with probability 0.18. The

second row of Table 11 shows the probability of being high-performing for each driver group.

Driver group 2 is high-performing with probability 96.5%, and group 4 is high-performing

with probability 93.4%. Meanwhile, driver groups 2 and 4 have the lowest average reservation

values.

Table 11: Estimation Results of Unobserved Heterogeneity

Group 0 Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

Population density of each group 0.07 0.06 0.18 0.42 0.18 0.04 0.05

Probability of H-Type 76.7% 78.7% 96.5% 49.6% 93.4% 82.8% 81.0%

Average Reservation Value 46.2 45.6 36.5 50.9 40.6 45.1 44.8

Figure 3 shows the estimated reservation values with unobserved driver heterogeneity.

The average estimated reservation value is 49 CCY. The black line shows the estimated

reservation values for the benchmark case. The reservation value is lowest during morning

hours, around 25 CCY, and highest at late night, around 68 CCY. For context, the minimum

hourly wage in the city of the study was 18.5 CCY in 2018. From the estimated results, we can
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see that drivers have higher reservation values during incentivized hours between 10 AM—2

PM and 7 PM—5 AM. It helps explain why the ride-hailing platform wants to implement

algorithmic preferential wage-setting to incentivize drivers to work more during incentivized

hours. In terms of driver heterogeneity, driver groups 2 and 4 exhibit low reservation values

during mid-day and early-night periods, respectively. The estimated warm-up cost is 124

CCY, around 2.5 times the average hourly reservation value. The high warm-up cost helps

explain why drivers usually choose to drive consecutive hours.

Figure 3: Estimated Reservation Values with Unobserved Driver Heterogeneity

Table 11 shows that three main driver groups dominate: the benchmark drivers (group

3), drivers with low mid-day reservation values (group 2), and those with low early-night

reservation values (group 4). To better understand the estimated driver groups, we associate

the observed driver characteristics with the respective driver groups. Because driver group

2 has a low mid-day reservation value and a high probability of being high-performing,

observed high-performing drivers who choose to work mid-day are more likely to be in driver

group 2. Similarly, observed high-performing drivers who work early night are more likely

to be in driver group 4. Based on this definition, we divide observed high-performing drivers

into several groups according to their working hours. The Day group refers to drivers who

work at least 2 consecutive hours in the daytime for at least 8 of 21 workdays.24 The Night

group refers to drivers working at least 2 consecutive hours at night for at least 8 of 21

workdays. Drivers who satisfy both criteria belong to the Day&Night group. The three

groups (Day, Night, Day&Night) are mutually exclusive. The rest of the high-performing

24This is consistent with our definition of high-performing drivers, who we require to satisfy the condition
in at least 8 of the 21 workdays.

28



drivers are grouped into the Rest group.

Table 12 compares the driver characteristics of different driver groups in the data, with

several interesting findings. First, the Day group has a higher proportion of female drivers

(3.5%) than the Night group (1.2%). Second, the average age in the Day group (38.3) is

higher than that of the Night group (36.5). Third, non-locals are more likely to be high-

performing drivers. For instance, 76% of the drivers in the Day&Night group are non-local

drivers, compared to 62% non-local drivers in the Night or Day groups, and 53% non-local

drivers for the low-performing drivers. Therefore, the results suggest that driver groups 2 and

4 are more likely to consist of older, non-local, and female drivers. On the other hand, driver

group 3 is more likely to include younger, local, and male drivers. By associating observed

driver demographics with estimated driver groups through unobserved heterogeneity, in the

counterfactual analysis we can better understand which individuals may benefit or suffer

from the implementation of a preferential algorithm.

Table 12: Observed Driver Characteristics

Type Low-Performing High-Performing

Group Night Day Day&Night Rest

Female 3.5% 1.2% 3.5% 1.7% 1.6%

Age 37.4 36.5 38.3 36.8 36.4

Non-local 53% 62% 63% 76% 62%

# of Drivers 16,392 3,073 6,659 11,939 2,041

Last, we validate our model by checking the model’s goodness of fit. Specifically, we

examine whether the simulated values fit the observed CCPs well. Figure D.1 shows the

model’s goodness of fit. Overall, the simulated values fit the observed CCPs well.

7 Counterfactual Analysis

We conduct two main counterfactual experiments. First, we show the welfare effects of

eliminating the preferential algorithm in the short and long term. In the short term, ride fares

are held fixed. The platform will re-optimize its pricing strategy and change ride fares in the

long term. Second, we investigate what factors determine the effectiveness of the preferential

algorithm. Primarily focusing on the demand parameter ε (demand elasticity) and the warm-

up cost parameter κ, we examine how the value of these key structural parameters affect the

welfare implications of a preferential algorithm.
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7.1 Elimination of Preferential Algorithm (“Fair” Pay)

In the first counterfactual analysis, we study changes in welfare if the preferential algorithm

based on work schedules is eliminated. In this case, orders would be randomly assigned to

nearby active workers. Effectively, the hourly wage each driver earns will become

W̃t =
ηPtDt(Pt)

Nt

.

Given the new sequence of hourly wages {W̃t}, drivers solve the unconstrained dynamic

discrete choice problem for each hour t:

U1t = W̃t︸︷︷︸
non-preferential

wage rate

+ σ · ε1t,

U0t = Ot︸︷︷︸
outside option value

+ σ · ε0t,

where we have replaced the preferential wage rates WH
t and WL

t by the “fair” rate W̃t. In

the short term, ride fares without the preferential algorithm are held the same as ride fares

with the preferential algorithm.

First, we show how the platform leverages cross-time elasticity using the preferential

algorithm. When ride fares are fixed in the short term, eliminating the preferential algorithm

will decrease labor supply, resulting in labor shortages for most hours. Panel (a) of Figure 4

shows the level of labor shortage.25 We can see a severe labor shortage during mid-day and in

the late afternoon when we eliminate the preferential algorithm in the short term. Panel (b)

shows the wage differential between high-performing and low-performing drivers when the

preferential algorithm is present. A high wage differential in a particular hour means a high

incentive wage for that hour. The results show that the relation between wage differentials

and labor shortages is not one-to-one. For example, there is a severe labor shortage at 1 PM

and 2 PM; however, the platform does not directly provide high incentive wages at 1 PM

and 2 PM specifically. Instead, the platform provides high incentive wages from 5 AM to 8

AM. Panel (a) shows that the labor shortage is very mild from 5 AM to 7 AM in the early

morning. Therefore, the platform does not necessarily provide direct high incentive wages

to mitigate labor shortages in a given hour, but instead smooths out the payment of high

incentive wages by leveraging cross-time elasticity differences.

To further illustrate the idea of cross-time elasticity, we eliminate the wage differential

25To better illustrate the results, we normalize the maximum labor shortage and the maximum wage
differential to 1 in Figure 4.
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(a) Labor Shortage (b) Wage Differential (WH
t - WL

t )

Figure 4: Illustration of Leveraging Cross-time Elasticity

between high-performing and low-performing drivers in only one hour (the treatment hour)

and study the implied elasticity of labor supply. Precisely, we calculate the elasticity as

Eτt (h) =

(
N τ
t (W̃H , W̃ L)−N τ

t (WH ,W L)
)
/N τ

t (WH ,W L)

(W̃ τ
h −W τ

h )/W τ
h

,

where h is the chosen hour where we eliminate the wage differential between high-performing

and low-performing drivers. Figure 5 shows the absolute value of the elasticity of labor supply

corresponding to the elimination of the wage differential at 12 PM. The blue line represents

the low-performing drivers, while the red line represents the high-performing drivers. Low-

performing drivers are much more responsive to the elimination of the wage differential

than high-performing drivers. On the one hand, high-performing drivers’ labor supply is

inelastic in all hours (less than 0.7). On the other hand, low-performing drivers’ labor

supply elasticities are higher than 0.9 in all hours and even higher than 1 in the hours near

the treated hour. The absolute elasticity value generally decreases for hours further away

from the treatment hour. It is because there is a high warm-up cost of starting to work, so

adjacent hours of the treatment hour will be affected more. However, the absolute elasticity

value does not monotonically decrease with respect to the distance to the treatment hour

because of the variation in reservation values across the different hours of the day. Given

that multiple-hour labor supply responds to the wage differential at one particular hour, the

platform can strategically choose when to provide high incentive wages. In Appendix I, we

replicate this exercise by changing the treatment hour from 7 AM to 6 PM.

Next, we show the welfare effects of eliminating the preferential algorithm. We study the

welfare effects in both the short run and the long run. In the long run, the platform will
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Figure 5: Elasticity of Labor Supply When Eliminating Wage Differential at 12 PM

re-optimize the hourly ride fares P to maximize its payoff:26

max
~P

(1− η)
∑
t

PtDt(Pt)

s.t. Dt(Pt) ≤ λ̃tNt(Wt;θ)

(6)

Using the estimated parameters, we solve for the new equilibrium outcome if the platform

can no longer implement algorithmic preferential wage-setting based on the work schedule.

Then, we calculate the changes in platform revenue, consumer surplus, and driver surplus

by comparing the outcome without the preferential algorithm to the outcome with the pref-

erential algorithm. We calculate consumer welfare as
∑

t

∫∞
Pt
δtx
−εdx and the driver surplus

of each schedule j as

EV j
0 = σ

[
ln
(

exp((W̃1 − κ+ βEV12)/σ) + exp((O1 + βEV02)/σ)
)

+ γ
]
,

where EV j
0 represents the expected value choosing each work schedule type j.27 Table 13

shows the results. In the short term, eliminating the preferential algorithm will result in a

massive loss for both the platform and the rider because of a driver shortage on the one hand.

On the other hand, drivers enjoy more flexibility in choosing a work schedule under “fair”

26Note that the two feasibility constraints in equation 3 become one because all drivers have the same
likelihood of receiving a task, and λ̃t is the technology restriction without algorithmic preferential wage-
setting. Under “fair” pay, there is only one group, so s = 1.

27Note that consumer surplus
∑
t

∫∞
Pt
δtx
−εdx =

∑
t
δt
ε−1 (Pt)

1−ε = 1
(ε−1)(1−η) × platform revenue. In the

short term, the total number of riders served equals to min{Dt(Pt), λ̃tNt(Wt;θ)}.
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pay. Hence, there will be a 0.14% increase in driver surplus. High-performing drivers suffer a

loss of 0.63% because there is no longer a bonus for being high-performing. Low-performing

drivers see an increase in hourly wage, hence a 0.63% increase in surplus. In aggregate, the

total surplus will decrease by 7.16% if we eliminate the preferential algorithm.

Table 13: Changes in Welfare

Changes in short term long term

Platform revenue -12.16% -1.42%

Consumer surplus -12.16% -1.42%

Driver surplus 0.14% 0.49%

Total surplus -7.16% -0.64%

Decomposition of Per-Driver Surplus

High-performing driver (non-switcher) -0.63% -0.16%

Low-performing driver (non-switcher) 0.69% 0.99%

Switcher (from H-type to L-type) 3.51% 3.81%

Change in Probability of being H-type -11.48% -9.98%

Notes: We calculate changes in welfare by measuring the results without a
preferential algorithm minus the results with a preferential algorithm. In
the short term, ride fares without a preferential algorithm are held the same
as ride fares with a preferential algorithm. In the long term, the platform
re-optimizes its pricing strategy without a preferential algorithm.

In the long term, the platform will re-optimize its pricing strategy. The platform will

increase ride fares to reduce the driver shortage that we see in the short term when we

eliminate the preferential algorithm. As a result, the loss of platform and riders will be

smaller in the long term compared to the short term, resulting in a total of 1.42% decrease

in surplus. Driver surplus will increase further, because drivers benefit in the long term

from the increased ride fare. Total driver surplus will increase by 0.49% if we eliminate the

preferential algorithm. In the long term, low-performing drivers have a 1% increase in surplus

because they benefit from more flexibility in working and a higher ride fare. Regarding the

extensive margin, the probability of being high-performing decreases by 11.48 percentage

points in the short term and decreases by 9.98 percentage points in the long term. After we

eliminate the preferential algorithm, the probability of being high-performing drivers slightly

increases in the long term compared to the short term. The total surplus will decrease by

0.64% if we eliminate the preferential algorithm.

Lastly, we look at how different groups of drivers are affected if we eliminate the pref-
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erential algorithm. We characterize driver groups by unobserved heterogeneity estimated

in Section ??. Table 14 shows the results. First, we can see both winners and losers from

eliminating the preferential algorithm. Driver groups 2 and 4 experience a decrease in their

surplus by 0.36% and 0.22% respectively in the short term, while all other driver groups ex-

perience an increase in their surplus from the elimination of the preferential algorithm. The

welfare loss of driver groups 2 and 4 is because they are more likely to be high-performing,

and high-performing drivers will no longer earn extra hourly wages without the preferential

algorithm. Previous results show that drivers in groups 2 and 4 are high-performing with

probability 96.5% and 93.4%, respectively. Previous results also show that among high-

performing drivers, female drivers and older drivers are more likely to fall into groups 2 and

4. Therefore, the counterfactual results indicate that women and older drivers who choose

to be high-performing are more likely to suffer from eliminating the preferential algorithm.

The general effect for female drivers is ambiguous, because women are also more likely to be

low-performing with a larger welfare gain from the elimination of the preferential algorithm.

Non-locals are more likely to have a welfare loss if we eliminate the preferential algorithm

because they are more likely to be high-performing. All other driver groups (younger, local,

male) will benefit from the elimination of the preferential algorithm.

Table 14: Change in Driver Surplus by Groups of Drivers

Driver Group

Changes in
Driver Surplus

Group 0 Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

Panel I: Short term
Total 0.08% 0.05% -0.36% 0.20% -0.22% 0.00% 0.07%

H-Schedule -0.41% -0.43% -0.50% -0.14% -0.44% -0.38% -0.42%

L-Schedule 0.35% 0.38% 0.86% 0.12% 0.57% 0.37% 0.36%

Panel II: Long term
Total 0.29% 0.28% -0.02% 0.22% 0.08% 0.23% 0.29%

H-Schedule -0.14% -0.15% -0.17% -0.04% -0.13% -0.12% -0.14%

L-Schedule 0.54% 0.58% 1.19% 0.16% 0.86% 0.57% 0.56%

Notes: We calculate changes in welfare by results without a preferential algorithm minus results with the
preferential algorithm. We characterize driver groups by unobserved heterogeneity. In the short term,
ride fares without a preferential algorithm are held the same as ride fares with a preferential algorithm.
In the long term, the platform re-optimizes its pricing strategy without a preferential algorithm.

In summary, the platform benefits from implementing a preferential algorithm by lever-

aging the cross-time elasticity difference in labor supply. In the short term, eliminating the

preferential algorithm results in a significant welfare loss for the platform and riders due
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to driver shortages. Drivers experience an increase in surplus because of more flexibility in

choosing their work schedule. The platform will re-optimize pricing and increase ride fares

in the long term. As a result, the driver shortage will be mitigated, and welfare loss will

be smaller for the platform and riders. Drivers will have an even greater increase in welfare

because of increased ride fares. Among different groups of drivers, male, young, and local

drivers are more likely to benefit from the elimination of the preferential algorithm. Older

drivers are likely to experience a welfare loss. The net effect for female drivers is ambiguous,

with a welfare loss for high-performing female drivers and a welfare gain for low-performing

female drivers.

7.2 Factors Determining Preferential Algorithm Effectiveness

To further investigate what factors determine the effectiveness of the preferential algorithm,

we conduct counterfactuals by alternating key structural parameters. Motivated by our two-

period model in Appendix ??, we focus on the demand elasticity ε and warm-up cost κ. Table

15 shows the results when we alter the value of demand elasticity. When demand is more

elastic, the platform benefits more from utilizing the cross-time difference in elasticity by

implementing the preferential algorithm. Therefore, in column (1) of Table 15, we see a larger

increase in platform revenue from 1.44% to 2.89% if the platform implements the preferential

algorithm. On the other hand, drivers suffer less from the preferential algorithm if demand

elasticity increases. Total driver surplus will decrease by 0.32% when demand is more elastic,

compared to a decrease of 0.49% when demand is less elastic. The intuition is that when

demand is very elastic, the platform is less willing to incentivize labor supply by increasing

ride fares. Otherwise, the platform will see a large decrease in rider demand. Therefore,

drivers will experience a smaller increase in wage rate when eliminating the preferential

algorithm. Equivalently, this means that drivers will experience a smaller decrease in wage

rate, and hence driver surplus, when the platform implements the preferential algorithm.

Column (4) of Table 15 confirms this intuition by showing that the average decrease in

wage is smaller (5.03% versus 7.26%) when demand is more elastic. As a result, the loss of

low-performing drivers decreases from 0.98% to 0.17%.

Next, we examine the effect of the warm-up cost κ. Table 16 shows the results when we

vary the value of the warm-up cost κ. When the warm-up cost is higher, the platform must

pay higher wages to incentivize drivers to work. Hence, avoiding paying such high incentive

wages by implementing the preferential algorithm is more profitable for the platform. On the

other hand, saving these high incentive wages reduces the ride fare, and hence more riders

can be served. Serving more riders also generates more hourly revenues for the drivers. As
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Table 15: Varying the Value of Demand Elasticity ε

Changes in (With - Without)

Demand Elasticity
Platform Revenue/
Consumer Surplus

Driver Surplus
Driver Surplus
(Low-performing)

Average Wage

Benchmark 1.44% -0.49% -0.98% -7.26%

ε× 1.1 2.13% -0.47% -0.52% -6.55%

ε× 1.2 2.60% -0.40% -0.29% -5.78%

ε× 1.3 2.89% -0.32% -0.17% -5.03%

a result, the loss in driver surplus from the preferential algorithm will be smaller when the

warm-up cost is larger. Column (4) of Table 15 confirms the intuition by showing that the

change in the number of served riders is greater (9.76% versus 9.55%) when the warm-up

cost is larger.28

Table 16: Varying the Value of Warm-up Cost κ

Changes in (With - Without)

Warm-up Cost
Platform Revenue/
Consumer Surplus

Driver Surplus
Driver Surplus
(Low-performing)

Consumers Served

Benchmark 1.44% -0.49% -0.98% 9.55%

κ× 1.1 1.45% -0.49% -0.93% 9.64%

κ× 1.2 1.46% -0.49% -0.86% 9.71%

κ× 1.3 1.47% -0.48% -0.79% 9.76%

To summarize, the platform benefits more from implementing a preferential algorithm

when the demand is more elastic or when the warm-up cost is greater. Meanwhile, the loss of

driver surplus with a preferential algorithm is also smaller when the demand is more elastic

or when the warm-up cost is greater.

28In the second case, when we alter the value of the warm-up cost κ, showing the change in average wage
will not directly reveal how driver surplus changes, because driver utility is affected by both the warm-up cost
and average wage. Instead, when demand elasticity is fixed in the second case, the surplus of low-performing
drivers will monotonically increase with respect to the number of riders served. Similarly, in the first case,
when we alter the value of demand elasticity η, showing the change in the number of riders served will not
directly reveal how driver surplus changes, because the number of riders served is determined by the labor
supply decision and demand elasticity. In the first case, when the warm-up cost is fixed, the surplus of
low-performing drivers will monotonically increase with respect to the average wage rate. This is why we
report different variables in the last column of Tables 15 and 16.
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8 Conclusion

The rapid acceleration of algorithmic technologies has changed the relationship between

workers and employers, and there is an urgent need to better understand the emerging chal-

lenges posed by algorithmic technologies. Our paper aims to provide the first empirical

study of algorithmic wage-setting and its impact on worker behavior and welfare. Using rich

transaction data from a leading ride-hailing company in Asia, we first document significant

wage differentials due to work schedules between high-performing drivers who work long and

consecutive hours and low-performing drivers. We show that three main factors drive the

wage differential: high-performing drivers are given more ride requests per hour, wait fewer

minutes for each request, and receive more requests from riders with lower cancellation rates.

Next, we exclude alternative explanations of the wage differentials, such as drivers strategi-

cally choosing where to work, strategically selecting and canceling orders, driving faster, and

having better knowledge of routes. The large wage differential we identify is mainly due to

algorithmic wage-setting, which penalizes low-performing drivers. Our arguments highlight

one important channel the literature has overlooked: the platform balances demand and

supply through the cross-time elasticity of substitution in labor supply. We then propose a

dynamic equilibrium model of a ride-hailing market to quantify the welfare effects of such

a preferential algorithm. Results show that platform revenues will decrease by 12.16%, and

the total surplus will decrease by 7.16% in the short term if we eliminate the preferential

algorithm. The probability of drivers being high-performing will decrease by 11.48% without

a preferential algorithm. For the switchers, driver surplus will increase by 3.51%. In the

long run, raising rider fares re-balances demand and supply, resulting in minimal welfare

loss. Moreover, an additional 10% of drivers would switch to flexible schedules. Among

drivers, young, male, and local drivers benefit more from the elimination of the preferential

algorithm. Lastly, we show comparative statistics of how demand elasticity or warm-up cost

affects gains/losses from preferential algorithms. Our simulations show preferential algo-

rithms benefit the platform more and hurt drivers less when rider demand is more elastic or

when the warm-up cost is higher.
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A Preferential Algorithm and Surge-Pricing

The platform benefits from both surge-pricing and a preferential algorithm, although their

mechanisms differ. To illustrate the contrasting ways surge-pricing and the preferential

algorithm operate and to showcase their potential complimentarity, we use our theoretical

model to solve equilibrium outcomes in the following four scenarios:

1. Without surge-pricing and preferential algorithm

2. With only surge-pricing

3. With only the preferential algorithm

4. With both surge-pricing and the preferential algorithm

As discussed in section 2, we consider a scenario with two time periods, denoted as t1 and

t2. For both periods, the demand is assumed to be P d
t = 10− q. At time period t1, drivers

have a reservation value of 0. At time period t2, drivers have positive and heterogeneous

reservation values, and the supply curve is defined as P s
t2

= q.
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p

π1
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q1

w1

p1

(a) t1

0
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q2

w2

p2

(b) t2

Figure A.1: Case 1, Without surge-pricing and preferential algorithm

In the baseline case, where neither surge-pricing nor a preferential algorithm is employed,

the platform sets a price pt for time period t, and drivers earn wt = (1 − η) ∗ pt, where η

represents the fractional commission fee. The platform’s earnings in this case are calculated

as η ∗ pt ∗ qt. For this numerical example, we assume η = 0.5. Figure A.1 shows the results

for case 1. In both periods, the platform chooses the optimal ride fare pt to maximize its

profit. For the numerical example, the platform sets ride fares at p∗1 = 5 and p∗2 = 6.67,
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leading to wage rates of w∗1 = 2.5 and w∗2 = 3.33 for the drivers. The blue area in Figure

A.1 represents the consumer surplus, the orange area represents the platform’s profit, and

the green area shows the drivers’ surplus.

Figure A.2 shows the results for case 2, in which only surge-pricing is implemented. With

surge-pricing, the platform captures the entire consumer surplus while offering a constant

wage rate to the drivers in each period.29 Consequently, the platform optimizes the wage

rate to pay the drivers in this scenario. In the given numerical example, the optimal wage

rate is set at w∗1 = wmin = 2,30 and w2 = 3.33. The implementation of surge-pricing results

in a complete elimination of consumer surplus in both periods.
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(a) t1

0
q

p

π2

DS2

q2

w2

(b) t2

Figure A.2: Case 2, With only surge-pricing

Figure A.3 shows the results for case 3, in which only preferential algorithm is imple-

mented. With a preferential algorithm, the platform communicates to drivers that if they

work during time period t2, they will be given priority and receive an order during time

period t1. Hence, the platform can motivate drivers to work during time period t2 without

offering extra incentive wages. As a result, the labor supply curve is shifted outwards at t2,

as illustrated by the dashed red line. In this scenario, the optimal prices are determined as

p∗1 = 5 and p∗2 = 5, leading to w∗1 = 2.5 and w∗2 = 2.5, with the number of orders served being

29Alternatively, we can use the same wage scheme utilized in case 1, where drivers receive a constant
fraction of the ride fare as their payment. This would lead to higher surplus for the drivers. However, to
highlight the key tradeoff and to simplify the model here, we opt for a constant wage rate in this context.

30The platform is unable to further decrease wage rate at t1 because of minimum wage requirement as
explained in 2. Otherwise, the platform will charge w∗1 = 0 at t1, resulting in no driver surplus during that
period. Consequently, the implementation of the preferential algorithm on top of surge-pricing would no
longer be feasible. To enable a meaningful comparison between case 2 and case 4, it is necessary to ensure
a positive drivers’ surplus at t1 in this particular scenario.
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q∗1 = 5 and q∗2 = 5. However, with a wage rate of w∗2 = 2.5, some drivers are actually earning

a negative surplus at t2. For drivers falling within the range of q′2 to q2, the wage at t2 is

insufficient to cover their reservation values. Despite this, they are willing to work during

this time period because they anticipate earning a positive surplus at t1 with prioritized

order assignment. The platform’s profit at t2 is represented by the orange rectangle π2 in

panel (b) of Figure A.3, which is calculated as (p2−w2)∗q2. The driver surplus is equivalent

to the green area DS2 − DS ′2. The preferential algorithm serves to assist the platform in

extracting additional driver surplus.
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Figure A.3: Case 3, With only preferential algorithm

Figure A.4 shows the results for case 4, in which both surge-pricing and preferential

algorithm are implemented. Firstly, similar to case 2, surge-pricing allows the platform to

capture the entire consumer surplus. Additionally, in case 4, the platform further leverages

the preferential algorithm to incentivize drivers to work more. In Figure A.4, the platform’s

profit is denoted as π1 and π2 respectively, while driver surplus is represented by DS1 during

time period t1 and DS2 −DS ′2 during time period t2.

We proceed to compare the equilibrium outcomes in each scenario. Table A.1 provides

a summary of the equilibrium profit of the platform, the ride fare, the wage rate, and the

quantity served for each scenario. On the other hand, Table A.2 shows the consumer surplus,

drivers surplus, and total surplus for the respective scenarios. We refer to the scenario where

neither the preferential algorithm nor surge-pricing is implemented as the benchmark case

(case 1). When comparing the results of case 2 with the benchmark case, we can see that

by implementing surge-pricing, the platform serves more consumers during t1. While drivers

experience a lower wage rate at t1, the total drivers’ surplus increases from 12.5 to 16 due to
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Figure A.4: Case 4, With both surge-pricing and preferential algorithm

the higher number of orders served. Consequently, with the implementation of surge-pricing,

although the entire consumer surplus is captured by the platform, drivers also benefit from

a higher driver surplus.

Table A.1: Equilibrium Outcomes

Platform’s profit Price Wage rate Quantity
t1 t2 t1 t2 t1 t2 t1 t2

Case 1: No algorithm, no surge 12.50 11.11 5.00 6.67 2.50 3.33 5.00 3.33

Case 2: Only surge-pricing 32.00 16.67 / / 2.00 3.33 8.00 3.33

Case 3: Only algorithm 12.50 12.50 5.00 5.00 2.50 2.50 5.00 5.00

Case 4: Both surge and algorithm 32.00 24.00 / / 2.00 2.00 8.00 4.00

Table A.2: Comparing Surplus

Driver Surplus Consumer Surplus Total Surplus
t1 t2 t1 t2 t1 + t2

Case 1: No algorithm, no surge 12.50 5.56 12.50 5.56 59.72

Case 2: Only surge-pricing 16.00 5.56 0.00 0.00 70.22

Case 3: Only algorithm 12.50 0.00 12.50 12.50 62.50

Case 4: Both surge and algorithm 16.00 0.00 0.00 0.00 72.00

When comparing case 3, where only the preferential algorithm is implemented, with the

benchmark case, we can see that the platform now charges lower ride fares and pays lower

wage rates during t2. Consequently, the driver surplus is reduced with the introduction of
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the preferential algorithm. However, on the other hand, consumers also benefit from the

lower ride fares during t2, resulting in an increase in consumer surplus.

Lastly, in case 4, we examine the outcomes when both surge-pricing and a preferential al-

gorithm are implemented. When comparing case 4 with case 2, we observe that the platform

not only captures the entire consumer surplus, but it also further extracts driver surplus by

introducing the preferential algorithm. As a consequence, the total driver surplus decreases

from 21.56 to 16. On the other hand, when comparing case 4 with case 3, we observe that

after implementing the preferential algorithm, the additional introduction of surge-pricing

actually leads to an increase in driver surplus. This is because the platform serves more

consumers, leading to drivers benefiting from the increased demand. Consequently, the total

driver surplus increases from 12.5 to 16 between case 3 and case 4.

In summary, the findings show that both surge-pricing and the preferential algorithm

contribute to increasing the platform’s profit, but they operate through distinct mechanisms.

By implementing surge-pricing, the consumer surplus is reduced compared to the baseline

scenario; however, both the platform’s profit and drivers benefit from this strategy. On the

other hand, implementing the preferential algorithm may decrease driver surplus compared

to the baseline scenario, but it leads to improved profitability for the platform and greater

benefits for consumers. The results from case 4 demonstrate the complementarity between

surge-pricing and the preferential algorithm. When both methods are implemented, the

platform’s profit is the highest, and the total surplus is also maximized. This highlights the

strong synergy between surge-pricing and the preferential algorithm in achieving the best

overall outcomes for the platform. However, it is important to note that this combination

also results in a significant distributional effect, leading to a reduction in both consumer and

driver surplus compared to the baseline scenario.
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B Drivers’ Finite-Horizon Dynamic Problem

This appendix describes in detail drivers’ finite-horizon dynamic choices. For each hour t,

the utility of working and not working are specified as

U τ
1t = W τ

t︸︷︷︸
preferential wage rate

+ σ · ε1t,

U τ
0t = Oι

t︸︷︷︸
outside option value,

Oιt = Ot + ηι,t

+ σ · ε0t, (B.1)

Drivers first observe random shocks ε, and then decide whether to work or not.

B.1 Low-Performing Drivers

For the final period, t = T ,

V L
T =


WL
T + σ · ε1T if aT = 1 & aT−1 = 1,

WL
T − κ+ σ · ε1T if aT = 1 & aT−1 = 0,

OT + σ · ε0T if aT = 0.

So, the expected utility for the last period T is given by

EV L
1T = σ

[
ln
(

exp(WL
T /σ) + exp(OT/σ)

)
+ γ
]
,

EV L
0T = σ

[
ln
(

exp((WL
T − κ)/σ) + exp(OT/σ)

)
+ γ
]
.

Throughout our model, EV’s subscript 1 represents at−1 = 1. In this case, EV L
1T represents

the expected value of a low-performing driver at time T if aT−1 = 1.

At any time t ∈ [T − 1, 2],

V L
t =


WL
t + σ · ε1t + βEV L

1t+1 if at = 1 & at−1 = 1,

WL
t − κ+ σ · ε1t + βEV L

1t+1 if at = 1 & at−1 = 0,

Ot + σ · ε0t + βEV L
0t+1 if at = 0.
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So, the expected utility of period t is given by

EV L
1t = σ

[
ln
(

exp((WL
t + βEV L

1t+1)/σ) + exp((Ot + βEV L
0t+1)/σ)

)
+ γ
]
,

EV L
0t = σ

[
ln
(

exp((WL
t − κ+ βEV L

1t+1)/σ) + exp((Ot + βEV L
0t+1)/σ)

)
+ γ
]
.

For the first period, t = 1,

V L
1 =

WL
1 − κ+ σ · ε11 + βEV L

12 if a1 = 1,

O1 + σ · ε01 + βEV L
02 if a1 = 0.

The expected value of being a low-performing driver is then derived as

EV L = σ
[
ln
(

exp((WL
1 − κ+ βEV L

12)/σ) + exp((O1 + βEV L
02)/σ)

)
+ γ
]
. (B.2)

B.2 High-Performing Drivers

High-performing drivers are required to work at T0 and for at least 2 consecutive hours. T0

can be any hour between 10AM–2PM and 7PM–5AM. There are 16 possible work schedules

to choose from. For schedule j ∈ {1, · · · , 16} with committed working hours [T0, T0 + 1]:

If T0 + 2 < T , then for the last period T,

V j
T =


WH
T + σ · ε1T if aT = 1 & aT−1 = 1,

WH
T − κ+ σ · ε1T if aT = 1 & aT−1 = 0,

OT + σ · ε0T if aT = 0.

The expected utility of period T is given by:

EV j
1T = σ

[
ln
(

exp(WH
T /σ) + exp(OT/σ)

)
+ γ
]
,

EV j
0T = σ

[
ln
(

exp((WH
T − κ)/σ) + exp(OT/σ)

)
+ γ
]
.

At t ∈ [T0 + 3, T − 1],

V j
t =


WH
t + σ · ε1t + βEV j

1t+1 if at = 1 & at−1 = 1,

WH
t − κ+ σ · ε1t + βEV j

1t+1 if at = 1 & at−1 = 0,

Ot + σ · ε0t + βEV j
0t+1 if at = 0.
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The expected utility of period t ∈ [T0 + 3, T − 1] is given by:

EV j
1t = σ

[
ln
(

exp((WH
t + βEV j

1t+1)/σ) + exp((Ot + βEV j
0t+1)/σ)

)
+ γ
]
,

EV j
0t = σ

[
ln
(

exp((WH
t − κ+ βEV j

1t+1)/σ) + exp((Ot + βEV j
0t+1)/σ)

)
+ γ
]
.

At time T0 + 2, because the driver commits to work at T0 and T0 + 1, aT0+1 = 1 with

probability 1:

V j
T0+2 =

WH
T0+2 + σ · ε1T0+2 + βEV j

1T0+3 if aT0+2 = 1,

OT0+2 + σ · ε0T0+2 + βEV j
0T0+3 if aT0+2 = 0.

At T0 + 1, the high-performing driver has to work. The expected value at any T0 + 1 is given

by

EV j
1T0+1 = WH

T0+1 + βEV j
1T0+2 + σγ.

At period T0, the expected value is

EV j
1T0

= WH
T0

+ βEV j
1T0+1 + σγ,

EV j
0T0

= WH
T0
− κ+ βEV j

1T0+1 + σγ.

At any time before T0, t ∈ [2, T0 − 1], the expected utility is given by

EV j
1t = σ

[
ln
(

exp((WH
t + βEV j

1t+1)/σ) + exp((Ot + βEV j
0t+1)/σ)

)
+ γ
]
,

EV j
0t = σ

[
ln
(

exp((WH
t − κ+ βEV j

1t+1)/σ) + exp((Ot + βEV j
0t+1)/σ)

)
+ γ
]
.

For period 1,

V j
1 =

WH
1 − κ+ σ · ε11 + βEV j

12 if a1 = 1,

O1 + σ · ε01 + βEV j
02 if a1 = 0.

The expected value of being a high-performing driver is then derived as

EV j = σ
[
ln
(

exp((WH
1 − κ+ βEV j

12)/σ) + exp((O1 + βEV j
02)/σ)

)
+ γ
]
. (B.3)
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C Identification and Estimation

C.1 Identification

We start with the case without UH so that Oι
t = Ot. Denote P τ

t (aT = j|aT−1 = i) = P τ
t (j|i),

where i, j = 0, 1 and τ = L,H. We have

logPL
T (1|1)− logPL

T (0|1) =
WL
T −OT

σ
(C.1)

logPL
T (1|0)− logPL

T (0|0) =
WL
T −OT − κ

σ
(C.2)

which implies that

κ

σ
= [logPL

T (1|1)− logPL
T (0|1)]− [logPL

T (1|0)− logPL
T (0|0)] (C.3)

Similarly, H-type drivers have

logPH
T (1|1)− logPH

T (0|1) =
WH
T −OT

σ
(C.4)

logPH
T (1|0)− logPH

T (0|0) =
WH
T −OT − κ

σ
(C.5)

Combining (C.1) and (C.4) gives

σ =
WH
T −WL

T

[logPH
T (1|1)− logPH

T (0|1)]− [logPL
T (1|1)− logPL

T (0|1)]
(C.6)

which implies that κ is identified following (C.3)

κ = (WH
T −WL

T )
[logPL

T (1|1)− logPL
T (0|1)]− [logPL

T (1|0)− logPL
T (0|0)]

[logPH
T (1|1)− logPH

T (0|1)]− [logPL
T (1|1)− logPL

T (0|1)]

and OT is identified following (C.1) or (C.4)

OT = WL
T − (WH

T −WL
T )

logPL
T (1|1)− logPL

T (0|1)

[logPH
T (1|1)− logPH

T (0|1)]− [logPL
T (1|1)− logPL

T (0|1)]

When there is no UH, we have three unknown parameters OT , σ, κ and four equatios

that capture the observed CCPs P τ
T (1|aT−1), where aT−1 = 0, 1 and τ = L,H. Note

that P τ
T (1|aT−1) and the above defined odd-ratios P τ

T (1|aT−1)/P τ
T (0|aT−1) capture the same

amount of identifying information because P τ
T (1|aT−1) + P τ

T (0|aT−1) = 1. The system is

overidentified using just the last period, which is clear because our identification steps don’t
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involve (C.5).

When there is UH, we assume that

Oι
t = Ot + ηι,t,

where ηι,t represents time-interval-specific preference. Considering data from the last period,

we have five unknown parameters OT , η(5), p(5), σ, κ, where (5) denotes the 5-th UH type,

and again four equations that capture the observed CCPs P τ
T (1|aT−1), where aT−1 = 0, 1

and τ = L,H. Obviously, data from the last period are insufficient for point identification.

Combining the last two periods, we have six unknown parameters OT , OT−1, η(5), p(5), σ, κ

and eight equations. More specifically, the eight equations represent how the observe CCPs

P
τ

t (1|at−1) = (1 − p(5))P τ
t (1|at−1) + p(5)P

τ
t,(5)(1|at−1), where at−1 = 0, 1, t = T − 1, T , and

τ = L,H, relate to the unknown parameters. In particular,

P
τ

T (1|aT−1) =(1− p(5))
exp(

W τ
T−κ1(aT−1=0)

σ
)

exp(
W τ
T−κ1(aT−1=0)

σ
) + exp(OT

σ
)

(C.7)

+ p(5)
exp(

W τ
T−κ1(aT−1=0)

σ
)

exp(
W τ
T−κ1(aT−1=0)

σ
) + exp(

OT+η(5)
σ

)
(C.8)

P
τ

T−1(1|aT−2) =(1− p(5))
exp(

W τ
T−1−κ1(aT−2=0)+βEV τ1T

σ
)

exp(
W τ
T−1−κ1(aT−2=0)+βEV τ1T

σ
) + exp(

OT−1+βEV
τ
0T

σ
)

(C.9)

+ p(5)
exp(

W τ
T−1−κ1(aT−2=0)+βEV

τ,(5)
1T

σ
)

exp(
W τ
T−1−κ1(aT−2=0)+βEV

τ,(5)
1T

σ
) + exp(

OT−1+η(5)+βEV
τ,(5)
0T

σ
)

(C.10)

where the expected utility for the last period T is given by

EV τ
aT−1T

= σ

[
ln
(

exp(
W τ
T − κ1(aT−1 = 0)

σ
) + exp(

OT

σ
)
)

+ γ

]
,

EV
τ,(5)
aT−1T

= σ

[
ln
(

exp(
W τ
T − κ1(aT−1 = 0)

σ
) + exp(

OT + η(5)
σ

)
)

+ γ

]
Note that P

τ

t (0|at−1) = 1− P τ

t (1|at−1) does not provide additional identification power.

We can continue the identification process backward and identify all the remaining pa-

rameters. In summary, we can identify the model with UH as long as each type involves at

least two periods.
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C.2 Estimation

We follow our identification argument closely in estimating the model. For each hour t, the

utility of working and not working are specified as

U τ
1t = W τ

t + σ · ε1t,

U τ
0t = Oι

t + σ · ε0t
= Ot + ηι,t + σ · ε0t.

Denote πs as the probability for individual driver i being the unobserved type ι. We make

use of observed conditional choice probabilities to estimate the structural parameters. We

first derive the conditional choice probability of working for each type of driver.

Low-performing Drivers

For the final period T , the conditional probability of working for each unobserved type ι is

PL(aT = 1|aT−1 = 1, ι) =
exp(WL

t /σ)

exp(WL
t /σ) + exp(OL

T/σ)
,

PL(aT = 1|aT−1 = 0, ι) =
exp((WL

t − κT )/σ)

exp((WL
t − κT )/σ) + exp(OL

T/σ)
.

For any t ∈ [2, T − 1],

PL(at = 1|at−1 = 1, ι) =
exp((WL

t + βEV L
1t+1)/σ)

exp((WL
t + βEV L

1t+1)/σ) + exp((OL
t + βEV L

0t+1)/σ)
,

PL(at = 1|at−1 = 0, ι) =
exp((WL

t − κt + βEV L
1t+1)/σ)

exp((WL
t − κt + βEV L

1t+1)/σ) + exp((OL
t + βEV L

0t+1)/σ)
.

For t = 1,

PL(a1 = 1, ι) =
exp((WL

1 − κ1 + βEV L
12)/σ)

exp((WL
1 − κ1 + βEV L

12)/σ) + exp((OL
1 + βEV L

02)/σ)
. (C.11)
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High-performing Drivers

For any schedule j ∈ {1, · · · , 16}, the conditional probability of working in the final period

T is

P j(aT = 1|aT−1 = 1, ι) =
exp(WH

t /σ)

exp(WH
t /σ) + exp(OT/σ)

,

P j(aT = 1|aT−1 = 0, ι) =
exp((WH

t − κT )/σ)

exp((WH
t − κT )/σ) + exp(OT/σ)

.

For any t ∈ [T0 + 3, T − 1], we have

P j(at = 1|at−1 = 1, ι) =
exp((WH

t + βEV j
1t+1)/σ)

exp((WH
t + βEV j

1t+1)/σ) + exp((Ot + βEV j
0t+1)/σ)

,

P j(at = 1|at−1 = 0, ι) =
exp((WH

t − κt + βEV j
1t+1)/σ)

exp((WH
t − κt + βEV j

1t+1)/σ) + exp((Ot + βEV j
0t+1)/σ)

.

At t = T0 + 2, we have

P j(at = 1|at−1 = 1, ι) =
exp((WH

t + βEV j
1t+1)/σ)

exp((WH
t + βEV j

1t+1)/σ) + exp((Ot + βEV j
0t+1)/σ)

.

At t = T0 + 1, we have

P j(at = 1|at−1 = 1, ι) = 1.

At t = T0, we have

P j(at = 1|at−1 = 1, ι) = 1,

P j(at = 1|at−1 = 0, ι) = 1.

For any t ∈ [2, T0 − 1], we have

P j(at = 1|at−1 = 1, ι) =
exp((WH

t + βEV j
1t+1)/σ)

exp((WH
t + βEV j

1t+1)/σ) + exp((Ot + βEV j
0t+1)/σ)

,

P j(at = 1|at−1 = 0, ι) =
exp((WH

t − κt + βEV j
1t+1)/σ)

exp((WH
t − κt + βEV j

1t+1)/σ) + exp((Ot + βEV j
0t+1)/σ)

.
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At t = 1, we have

P j(a1 = 1, ι) =
exp((WH

1 − κ1 + βEV j
12)/σ)

exp((WH
1 − κ1 + βEV j

12)/σ) + exp((O1 + βEV j
02)/σ)

.

Therefore, at any t, the conditional probability for high-performing drivers is

PH(at = 1|at−1 = 0) =
∑
ι

16∑
j=1

πι · P̃ j(ι) · P j(at = 1|at−1 = 0, ι),

PH(at = 1|at−1 = 1) =
∑
ι

16∑
j=1

πι · P̃ j(ι) · P j(at = 1|at−1 = 1, ι),

(C.12)

where P̃ j is the probability of choosing each high-performing schedule, and

P̃ j(ι) =
exp(EV j(ι))∑16
k=1 exp(EV k(ι))

.

The MSM estimate θ̂ minimizes the weighted distance between the data moments and

the simulated moments:

L(θ) = argmin
θ,π

[P d
τ − P S

τ (θ)]′W [P d
τ − P S

τ (θ)],

where W is a positive definite matrix.

Denote the actual CCPs obtained from the data as P d
τ (·), which is a 48-by-1 vector.

Second, for a given set of parameters θ, the model-simulated CCPs are P S
τ (·). The model is

estimated by minimizing the weighted distance between the data moments and the simulated

moments of the finite mixture model:

{θ̂, π̂} = argmax
θ,π

N∑
i=1

ln

[∑
s

πs

24∏
t=1

l(ait|s, p̂, ait−1, θ)

]
,

where p̂ is a vector of empirical conditional choice probabilities; πs is the population probabil-

ity of type s; the number of unobserved types is assumed to be known; and l(ait|s, p̂, ait−1, θ)
denotes the likelihood contribution of driver i at time t.

We can express the likelihood as follows:

l(ait|s, p̂, ait−1, θ) =
ait exp ((vτ1t − vτ0t)/σ) + (1− ait)

1 + exp ((vτ1t − vτ0t)/σ)
.

This can be estimated through a two-step estimator. First, we can calculate q̂ns, the
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probability n is in unobserved state s, as

q(m+1)
ns =

π
(m)
s

∏24
t=1 l(ait|s, p̂, ait−1, θ)∑

s′ π
(m)
s′
∏24

t=1 l(ait|s′, p̂, ait−1, θ)
.

Then, use q
(m+1)
ns to compute π

(m+1)
s according to

π(m+1)
s =

1

N

N∑
n=1

q(m+1)
ns .

Next, use q
(m+1)
ns to update p(m+1) from

P (at+1 = 0|at = 0, s) =

∑N
n=1 d0ntq

(m+1)
ns∑N

n=1 q
(m+1)
ns

.

Taking q
(m+1)
ns and p(m+1) as given, obtain θ(m+1) from

θ(m+1) = argmax
θ

N∑
i=1

∑
s

24∑
t=1

q(m+1)
ns ln [l(ait|s, p̂, ait−1, θ)] .

We have 16 unknown high-performing types. First, we can calculate q̂nsj, the probability

n is in unobserved state s and schedule j, as

q
(m+1)
nsj =

π
(m)
sj

∏24
t=1 l(ait|s, p̂, ait−1, θ, j)∑

s′
∑

j′ π
(m)
s′j′
∏24

t=1 l(ait|s′, p̂, ait−1, θ, j)
.

Then, use q
(m+1)
nsj to compute π

(m+1)
sj according to

π
(m+1)
sj =

1

N

N∑
n=1

q
(m+1)
njs .

Next, use q
(m+1)
nsj to update p(m+1) from

P (at+1 = 0|at = 0, s, j) =

∑N
n=1 d0ntq

(m+1)
nsj∑N

n=1 q
(m+1)
nsj

.
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Taking q
(m+1)
ns and p(m+1) as given, obtain θ(m+1) from

θ(m+1) = argmax
θ

N∑
i=1

∑
s

∑
j

24∑
t=1

q
(m+1)
nsj ln [l(ait|s, p̂, ait−1, θ, j)] .

Similarly, we derive the conditional probability for high-performing drivers for each sched-

ule. Because sixteen possible work schedules satisfy the high-performing requirement, at any

time t, the conditional probability for high-performing drivers is

PH(at = 1|at−1 = 0) =
16∑
j=1

P̃j · Pj(at = 1|at−1 = 0),

PH(at = 1|at−1 = 1) =
16∑
j=1

P̃j · Pj(at = 1|at−1 = 1),

(C.13)

where P̃j is the probability of choosing schedule j within high-performing drivers. Therefore,

equations ?? and C.13 show the model-predicted CCPs as a function of observed wage

sequence {WH ,WL} and parameters θ. In Appendix ??, we show the detailed derivation

of Pτ (at = 1|at−1 = 0) and Pτ (at = 1|at−1 = 1) for τ ∈ {L,H} and t ∈ [1, 24].
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D Model Validation

Figure D.1 illustrates the model’s goodness of fit. The simulated conditional choice prob-

abilities (CCPs) reasonably align with the observed CCPs for both high-performing and

low-performing drivers. However, there is a slight discrepancy in the fit of high-performing

drivers at at−1 = 0 during early-morning hours. This discrepancy could be attributed to

the relatively low number of transactions occurring during early-morning compared to other

working hours.

(a) High-performing Drivers, State = 0 (b) High-performing Drivers, State = 1

(c) Low-performing Drivers, State = 0 (d) Low-performing Drivers, State = 1

Figure D.1: Model Goodness of Fit

Note: Figure D.1 shows the model’s simulated values against the empirically observed CCPs. The black
lines represent the model’s simulated values.
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Online Appendices: Not For Publication

E Data Description

For the working dataset, we are interested in driver operation and wage information, and

construct several important variables for each driver-hour:

• Earning time is the trip duration, measured as the amount of time a driver spends

with the rider. A driver can transport riders and collect revenue only during the earning

time.

• Drive Distance measures the distance over which a driver serves a rider in an hour.

• Driver’s Hourly Wage measures the revenue of a driver in an hour.31 Given that

the platform fee is around 20% of the revenue, the driver income is roughly 80% of the

ride fare.

• Pickup Time measures the time a driver spends on the way to pick up riders.

• Idle Time is the time a driver spends waiting for orders in an hour, given by the

following relationship: Idle time = 60 - Work time - Pickup time.

• Number of Orders measures the number of orders a driver receives in an hour.32

Below, we discuss our algorithm of how we construct a driver-hour level dataset from the

driver-rider-order level dataset:

• Drop Outliers. We keep all orders with departure and arrival in the urban area (eight

districts) within the city, and drop orders with a price of zero, a price above 200, or

that span over four hours. In total, we drop less than 0.5% of the observations.

• Construct Work Schedules. Following Chen et al. (2019), we define a driver as

working in an hour t if he works at least ten minutes out of the hour. At night (22PM–

6AM), when orders are sparse, we define a driver as working in hour t if he/she works

at hour t−1 as well as hour t+ 1. All working hours of a driver comprise his/her work

schedule.

31Our definition is different from Chen et al. (2019), which defines “wage rate” as a driver’s total earnings
in an hour, divided by minutes worked, multiplied by sixty. In other words, they study the wage rate when
the driver is driving a rider, and we focus on the wage rate when the driver is active on the platform.

32In rare cases, an order may span several hours, which we attribute to the hour of departure.

57



• Match Order to Hour. Suppose an order spans x hours. We divide this order into

x sub-orders, with each sub-order corresponding to an hour. The hourly wage rate and

driving distance are defined to be proportional to each hour. For instance, suppose an

order starts at 8:50 and finishes at 9:20, yielding a revenue of 60 CCY. We say that
10

10+20
= 1

3
of the order belongs to 8 AM operations, and the rest contributes to 9 AM

operations. By doing so, we divide this order into two sub-order operations: The driver

drives 10 minutes and earns 20 CCY at 8 AM and drives 20 minutes (10 miles) and

makes 40 CCY at 9 AM. After matching orders to hours, we aggregate all sub-orders

in an hour and obtain this driver’s earning time, ride prices, pickup time, idle time,

and number of orders in this hour.
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F Summary Statistics: Orders and Transactions

Table F.1 summarizes orders and transactions, and the unit of observation is at the order

level. There are a total of around 15 million order transactions in our sample period, with

an average route length of 6.9 km and drive time of 17 minutes. The average price per order

is 25.31 CCY (about $4 USD).

Table F.1: Summary Statistics: Orders and Transactions

Variable Mean Std. Dev. Min Max
Price 25.31 26.44 0 3,387

Drive Distance (km) 6.92 6.85 0 727

Drive Time (minutes) 17.36 13.14 0 1,458

Number of Observations 14,471,573

Multi-Homing versus Single-Homing. In our main analysis, we focus on Platform X,

because Platform X accounts for more than 90% of China’s mainland ride-hailing market.

Nonetheless, there is a concern that drivers may switch between working for different plat-

forms if they pay different hourly wages. To address such concerns, we document the number

of vehicles/drivers that are multi-homed versus single-homed in our data. First, we look at

the number of vehicles that are multi-homed from registration data. Panel (a) of Table F.2

shows that 85% of vehicles are registered to only one platform, and only 1.8% of vehicles are

registered to more than two platforms. Therefore, multi-homing is not very common based

on vehicle registration information. Then, we look at how common multi-homing is directly

from actual transactions. Panel (b) of Table F.2 shows that among all the vehicles that

conducted business in December 2018, 92.5% used a single platform and never switched to

another platform within the month. Only 0.3% of vehicles used more than two platforms in

the given month. The evidence shows that the majority of vehicles/drivers are single-homed.

Table F.2: Multi-Homing versus Single-Homing

Number of Registered
Platforms

Number of
Vehicles

Percent

1 86,422 84.6%

2 13,838 13.5%

3 1,866 1.8%

(a) Based on Vehicle Registration Data

Number of Used
Platforms

Number of
Vehicles

Percent

1 49,213 92.5%

2 3,836 7.2%

3 141 0.3%

(b) Based on Transactional Data

Among the multi-homed drivers, we further study how these drivers switch between differ-

ent ride-sharing platforms. We also calculate the number of multi-homed and single-homed
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drivers within a whole day based on actual transactions. In any given day of December, only

about 1% of drivers used more than one platform within a day. This therefore suggests that

drivers in our data are mostly single-homed and rarely switch between platforms.

Orders, Transactions, Precipitation, and Temperature. Figure F.1 reports the daily

number of orders and transactions during our sample period (10 days of order data and 31

days of transaction data). We compare them with daily precipitation and average temper-

atures. From December 6th to 10th, the precipitation increases and temperature decreases,

resulting in more ride orders (customer demand). However, the number of completed trans-

actions across days remains the same throughout our sample period. Information about

precipitation and temperature is used in our demand estimation.

Figure F.1: Orders, Transactions, Precipitation, and Temperature across Days
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G Additional Regression Tables on Wage Differentials

Appendix G contains additional regression tables for robustness checks, and verifies driver

demographics that may have explanatory power for wage differentials. Table G.1 reports how

the driver’s hourly wage depends on the fraction of different time intervals. We find that

drivers’ hourly wages are higher when they work more during midday and at night. Table G.2

shows that, given their work schedule, there is little evidence of wage differentials based on

driver demographics. Indeed, including driver characteristics barely changes the R-squared.

Moreover, a one standard-error change in the fraction of incentivized hours changes wage

rate by 14, which is an order of magnitude higher than the most important demographic

variable, age. Despite the statistical significance of gender, it is economically insignificant

in determining wage rate. In contrast, the coefficients on birth city and age reflect work

schedule variation across driver groups conditioning on the first two variables. These results

motivate controlling for age and birth city in our empirical analysis.

Table G.1: Hourly Wage by Different Schedules

Dependent Variables Hourly Wage

(1) (2) (3) (4)

# of Work Hours in month 0.003*** 0.003*** 0.003*** 0.003***

(0.000) (0.000) (0.000) (0.000)

% Morning Hours -15.895***

(0.185)

% Midday Hours 0.753***

(0.148)

% Afternoon Hours -14.407***

(0.284)

% Night Hours 11.131***

(0.119)

Constant 55.882*** 54.823*** 56.358*** 51.137***

(0.126) (0.127) (0.129) (0.132)

Observations 4,182,318 4,182,318 4,182,318 4,182,318

R-squared 0.042 0.040 0.041 0.042

Notes: We control for day-hour fixed effects, origin district fixed effects, and

destination district fixed effects. Standard errors are in parentheses. *** p<0.01.
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Table G.2: Hourly Wage by Driver Characteristics

Dependent Variables Hourly Wage Coef × Std

(1) (2) (3) (4) (5)

# of Work Hours in month 0.003*** 0.003*** 0.004*** 0.003*** 0.818

(0.000) (0.000) (0.000) (0.000)

% Incentivized Hours 18.724*** 18.216*** 14.042

(0.170) (0.171)

Non-local -0.332*** -0.138*** -0.097

(0.036) (0.027)

Age -0.061*** -0.045*** -1.689

(0.001) (0.001)

Female -0.677*** -0.431*** -0.009

(0.081) (0.081)

Constant 54.918*** 39.201*** 57.419*** 41.342***

(0.126) (0.190) (0.141) (0.203)

Day FE Y Y Y Y

Hour FE Y Y Y Y

Origin FE Y Y Y Y

Destination FE Y Y Y Y

Observations 4,182,331 4,182,331 4,182,318 4,182,318

R-squared 0.040 0.043 0.041 0.043

Notes: We control for day-hour fixed effects, origin district fixed effects, and destination district

fixed effects. Standard errors are in parentheses. *** p<0.01.
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H Cluster Schedules and Hourly Rates

This online appendix describes how we cluster drivers using their work schedule and hourly

wage rate data. We use the data that contains driver schedules and hourly revenue for all

drivers on Dec. 3rd, 2018. Our sample includes 23,689 drivers (observations).

We use a 24×1 vector for each driver to describe their working schedule and hourly wage

rate. The nth element represents the hourly revenue at n o’clock. If the driver does not work

at this hour, we denote the element value to be 0. For instance, if the driver worked at 7

AM and earned 18 CNY, the 7th element is 18 for this vector. In addition, we construct the

following variables to measure the driver’s working schedule and include them in our study:

• earlymorning: driver’s working hours during early morning (0 - 7)

• morning: driver’s working hours during morning peak (7 - 10)

• midday: driver’s working hours during mid-day (10 - 16)

• afternoon: driver’s working hours during afternoon (16 - 19)

• evening: driver’s working hours during evening (19 - 22)

• night: driver’s working hours during night (22 - 24)

• workhour: driver’s working hours in one day

• start: the hour in which the driver starts work

• end: the hour in which the driver ends work

• consecutive: driver’s consecutive working hours in a day

• consecutive1/2/3: We divide 24 hours into 3 parts. Consecutive1/2/3 indicates a

driver’s consecutive working hours in each part of the day.

• consecutive4: driver’s consecutive working hours during evening (19 - 22)

• morningCon/afternoonCon: driver’s consecutive working hours during morning

and afternoon hours

• HourlyRate: driver’s average hourly wage rate in a day
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We apply the k-means method and cluster the drivers in our working database. The

purpose of this clustering is to explore how different work schedules can affect the driver’s

hourly revenue. The k-means clustering method divides observations into a certain number

(k) of groups according to their similarity. We do not know the number of groups we define

ex ante . Therefore, we have tried k = 2, 3, 4 different clusters.

Table 1 illustrates the results when k = 2. Drivers are divided into low hourly rates

(cluster 1) and high hourly rates (cluster 2). High hourly rate drivers are more likely to

work longer and consecutive hours. Tables 2 and 3 report cluster results for k = 3 and

k = 4, respectively. Though we pre-set more clusters, drivers can be separated into two

groups. When k = 3, we have low hourly rate drivers (cluster 1) and high hourly rate drivers

(clusters 2 and 3). When k = 4, we have low hourly rate drivers (cluster 1) and high hourly

rate drivers (clusters 2, 3, and 4). Moreover, no matter which k we choose, the characteris-

tics of the lower-income schedules are similar: they work shorter and fewer consecutive hours.

Table H.1: Clustering results for k=2

cluster1 cluster2

Count 11,226 12,472

earlymorning 0.59 0.29

morning 1.2 2.15

midday 1.61 4.86

afternoon 0.93 2.71

evening 0.87 2.16

night 0.7 1.46

workhour 5.62 13.01

start 9.21 7.4

end 16.59 20.92

consecutive 4.56 11.59

consecutive1 1.3 1.61

consecutive2 2.16 6.24

consecutive3 1.91 4.75

consecutive4 1.29 2.98

morningCon 1.56 2.95

afternoonCon 1.22 3.52

HourlyRate 40.03 46.91

Table H.2: Clustering results for k=3

cluster1 cluster2 cluster3

Count 8,912 7,745 7,041

earlymorning 0.51 0.52 0.27

morning 1.21 1.43 2.51

midday 1.46 3.42 5.38

afternoon 0.76 2.58 2.48

evening 0.6 2.89 1.43

night 0.43 2.51 0.59

workhour 4.79 12.37 12.34

start 9.36 8.07 7.14

end 15.57 22.51 19.35

consecutive 3.92 10.36 11.35

consecutive1 1.24 1.34 1.83

consecutive2 1.98 4.4 6.91

consecutive3 1.34 6.16 3.27

consecutive4 0.84 4.41 1.7

morningCon 1.56 1.98 3.42

afternoonCon 0.98 3.52 3.11

HourlyRate 38.28 47.73 46.12
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Table H.3: Clustering results for k=4

cluster1 cluster2 cluster3 cluster4

Count 7,921 6,246 5,328 4,203

earlymorning 0.48 0.24 0.27 0.82

morning 1.32 2.59 2.36 0.3

midday 1.41 4.73 5.37 2.11

afternoon 0.72 2.79 2.33 2.16

evening 0.46 2.9 0.98 2.75

night 0.28 2.26 0.23 2.46

workhour 4.55 14.55 11.4 9.67

start 9.12 6.87 7.32 9.77

end 14.93 22.27 18.54 22.47

consecutive 3.71 12.44 10.53 8.16

consecutive1 1.29 1.82 1.72 0.96

consecutive2 1.94 6.09 6.85 2.76

consecutive3 1.09 6.04 2.51 5.74

consecutive4 0.62 4.19 1.06 4.26

morningCon 1.69 3.51 3.25 0.47

afternoonCon 0.91 3.74 2.85 3.02

HourlyRate 37.54 46.78 45.77 48.05
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I Results from Eliminating the Wage Differential

To understand the effect of eliminating wage differentials between high-performing and low-

performing drivers in the short run, Figure I.1 shows the equilibrium labor supply decision in

panel (a) and the equilibrium wage rate in panel (b). In the short term, the ride fares are held

fixed. When we eliminate the wage differential between high-performing and low-performing

drivers, drivers will switch away from being high-performing because there is no longer any

bonus for high performance. Because we fix the ride fares, and hence rider demand in the

short run, there will be a labor shortage because of fewer high-performing drivers. As a

result of the excess demand, the equilibrium wage rate without a preferential algorithm will

be higher than the wage rate of low-performing drivers when there is a preferential algorithm.

The equilibrium wage rate without a preferential algorithm lies between the former wage rate

of high-performing and low-performing drivers.

Figure I.1: Results from Eliminating the Wage Differential between WH and WL

Next, we study the counterfactual results of eliminating the wage differential between

high-performing and low-performing drivers only in the treatment hour h. When we eliminate

the wage differential between high-performing and low-performing drivers in one particular

hour, drivers will switch away from being high-performing, because the benefit for being a

high-performing driver is now smaller. Because we fix the ride fares, and hence rider demand

in the short run, there will be a labor shortage because of fewer high-performing drivers. As a

result, the equilibrium wage rate for low-performing drivers without a preferential algorithm

will be higher compared to the wage rate when there is a preferential algorithm. Figure I.2

shows the elasticity of labor supply corresponding to the elimination of the wage differential

of treatment hour h.

66



(a) 7 AM (b) 8 AM (c) 9AM

(a) 10 AM (b) 11 AM (c) 12 PM

(a) 1 PM (b) 2 PM (c) 3 PM

(a) 4 PM (b) 5 PM (c) 6 PM

Figure I.2: Absolute Elasticity of Low-Performing and High-performing Drivers
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J Explore Order Assignment using Detailed Order In-

formation

This section explores platform order assignment using detailed order information. We first

divide the city into 1km by 1km grids so that we can better locate these drivers. We compare

order quantity and quality for drivers who finish their last trip in the same grid at around

the same time. We find high-performing drivers are more likely to receive assignments for

higher-priced orders and have less idle time waiting for the driver.

We explore the order fare and wait time for different drivers who complete their last trip in

approximately the same time in the same grid. Table J.1 shows that high-performing drivers

receive orders which are 4.15% more expensive compared to low-performing drivers (Column

2). In addition, high-performing drivers wait 1.45% less time for the next order (Column 4).

These empirical findings are consistent with the platform favoring high-performing drivers:

assigning them with orders with higher revenue and less wait time.

Table J.1: Order Fare and Wait Time

(1) (2) (3) (4)

Order Fare log(Order Fare) Idle Time log(Idle Time)

High-performing 0.0437*** 0.0415*** -0.267*** -0.0145***

(0.00127) (0.00126) (0.0273) (0.00237)

Constant 3.432*** 3.018*** 8.913*** 1.292***

(0.0162) (0.00120) (0.0260) (0.00225)

Observations 3,081,466 3,081,466 3,058,969 3,058,969

R-squared 0.073 0.103 0.339 0.223

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

We control for 15Minute × 1km × 1km Grid fixed effects.

K Control For Unobservable Selection: IV results

To mitigate potential biases in driver selection based on unobservable characteristics, we

have employed instrumental dummy variables: the rate of change in precipitation and air

quality index (AQI) in the driver’s hometown city between 2017 and 2018. The selection of

drivers based on these variables is not influenced by the drivers’ unobserved characteristics.

These weather variables satisfy the two conditions required for valid instrumental vari-

ables (IVs). Firstly, the occurrence of precipitation and changes in air pollution may be cor-
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related with a driver’s decision to become a high-performing driver, as suggested by (Miguel

et al., 2004). For instance, alterations in precipitation and air pollution might motivate

more drivers to leave their hometowns and become high-performing drivers in the focal city

under study. Secondly, the variation in weather conditions in a driver’s hometown should

not directly impact the driver’s hourly rate or order distribution in the city being studied.

The IV results are presented in column (5), revealing a more significant wage differential

between high-performing and low-performing drivers. For further details and additional IV

results, please refer to Section K.

Table K.1: Wage Differential: First Stage

High-performing

(1) (2) (3) (4) (5) (6)

Change in Precipitation -0.157*** -0.155*** -0.154*** -0.159*** -0.157*** -0.155***

(0.00131) (0.00129) (0.00130) (0.00134) (0.00132) (0.00132)

Change in AQI -0.0270*** -0.0231*** -0.0206***

(0.00322) (0.00318) (0.00318)

Constant 0.898*** 0.898*** 0.886*** 0.895*** 0.896*** 0.884***

(0.000148) (0.000146) (0.000450) (0.000327) (0.000324) (0.000529)

Controls:

Day-Hour FE Y Y Y Y

Origin/Dest FE Y Y

Observations 4,182,318 4,182,318 4,182,318 4,182,318 4,182,318 4,182,318

R-squared 0.003 0.023 0.024 0.003 0.023 0.024

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

The first stage results are presented in Table K.1. We regress the High-performing dummy

on the weather conditions, with F-values exceeding 1000 for all specifications. In column

(1), we regress the High-performing dummy on the precipitation change without any fixed

effects. In column (2), we include day-hour fixed effects, and in column (3), we include

day-hour fixed effects as well as origin and destination fixed effects. Columns (4)-(6) are

replicates of (1)-(3) except that we include both precipitation change and AQI change as

explanatory variables.
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Table K.2: Wage Differential: IV results

Hourly Wage
(1) (2) (3) (4) (5) (6)

High-performing 8.908*** 9.480*** 5.599*** 9.268*** 9.813*** 5.759***
(0.679) (0.676) (0.677) (0.678) (0.675) (0.676)

Constant 41.98*** 47.28*** 49.47*** 41.65*** 46.97*** 49.32***
(0.611) (1.192) (1.186) (0.609) (1.191) (1.185)

Day-Hour FE Y Y Y Y
Origin FE Y Y
Destination FE Y Y

IV (2017-2018)
Change in Precipitation Y Y Y Y Y Y
Change in AQI Y Y Y

Observations 4,182,318 4,182,318 4,182,318 4,182,318 4,182,318 4,182,318
R-squared 0.024 0.034 0.050 0.024 0.034 0.050

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Our analysis reveals a robust negative correlation between precipitation and driver per-

formance. Specifically, a one percent increase in precipitation in a driver’s hometown is

found to be associated with a 0.154% decrease in the probability of a driver attaining high-

performance status. More precipitation usually associates with higher agricultural output

(Miguel et al., 2004) and inadvertently diminish drivers’ incentives to move to the city we

study and become a high-performing driver. Moreover, we identify a negative impact of air

quality on driver performance. A one percent increase in the Air Quality Index (AQI), re-

flecting elevated pollution levels, corresponds to a 0.02% decrease in the likelihood of drivers

achieving high-performance status. This observation aligns with the hypothesis that height-

ened pollution levels, often linked to increased industrial output in drivers’ hometowns, may

undermine their motivation to move to the city we study and become a high-performing

driver.

The instrumental variable (IV) results are presented in Table K.2. Column (1) presents

the results without any fixed effects, while column (2) includes day-hour fixed effects. In

column (3), we include day-hour fixed effects, origin fixed effects, and destination fixed

effects. Columns (4)-(6) are replicates of (1)-(3) except that we include both precipitation

change and AQI change as instrument.
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Our findings demonstrate that high-performing drivers outearn their low-performing

counterparts. Specifically, when examining column (3)/(6), we observe that high-performing

drivers earn an additional 5.6/5.8 CCY per hour compared to low-performing drivers. This

wage differential is notably higher than what is indicated by our main ordinary least squares

(OLS) findings.

We propose a conjecture that low-performing drivers exhibit a higher level of strategic

behavior. For instance, they may strategically select optimal times and locations to work,

which contributes to their comparatively lower number of working hours. This aligns with

the fact that their working decisions are more discerning and selective. In summary, our

OLS estimates underestimate the wage disparity due to algorithmic preferences.
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