Tickets to the Global Market: First US Patent Awards and Chinese Firm Exports

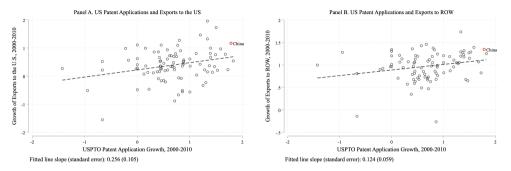
Robin Kaiji Gong¹, Yao Amber Li², Kalina Manova³, Stephen Teng Sun⁴

China Economics Summer Institute (CESI) 23rd August, 2023

¹The Hong Kong University of Science and Technology. Email: rkgong@ust.hk.
²The Hong Kong University of Science and Technology. Email: yaoli@ust.hk.
³University College London. Email: k.manova@ucl.ac.uk.
⁴City University of Hong Kong. Email: tengsun@cityu.edu.hk.

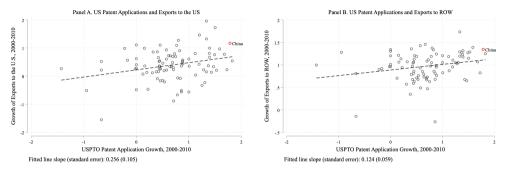
Patent Globalization

▶ Global patent activity has increased steadily in recent decades


- Remarkable rise in # patents taken out by foreign firms, especially from emerging economies, in a select few patent jurisdictions
- Example: share of foreign applicants to United States Patent and Trademark Office (USPTO) went up from 44% in 2000 to 51% in 2015

Patent Globalization

▶ Global patent activity has increased steadily in recent decades


- Remarkable rise in # patents taken out by foreign firms, especially from emerging economies, in a select few patent jurisdictions
- Example: share of foreign applicants to United States Patent and Trademark Office (USPTO) went up from 44% in 2000 to 51% in 2015
- ► First-order questions:
 - ▶ Why do firms patent their innovations abroad?
 - Can established patent authorities in developed countries act as global hubs for alleviating challenges faced by firms from emerging economies when they participate in the global marketplace?

USPTO Patent Applications and Exports Across Countries

Note: These figures plot the growth in exports respectively to the U.S. and to the rest of the world across countries against the growth in USPTO patent applications over the 2000-2010 period. The slope of the corresponding fitted line and its robust standard error are reported below each figure.

USPTO Patent Applications and Exports Across Countries

Note: These figures plot the growth in exports respectively to the U.S. and to the rest of the world across countries against the growth in USPTO patent applications over the 2000-2010 period. The slope of the corresponding fitted line and its robust standard error are reported below each figure.

▶ U.S. patents may confer advantages to the foreign patent holders that extent beyond market protection in the U.S.

This Paper: U.S. Patents and Chinese Exports

- ▶ Ideal institutional context: U.S. and China
 - ▶ Both are top-3 trading economies; U.S.: advanced with strong institutions vs. China: emerging with rapid structural transformation
 - ▶ Stigma about quality of Chinese products and Chinese patent system
 - ▶ U.S. is both important market and top patent office for Chinese firms

▲ Anecdotal Evidence

This Paper: U.S. Patents and Chinese Exports

- ▶ Ideal institutional context: U.S. and China
 - ▶ Both are top-3 trading economies; U.S.: advanced with strong institutions vs. China: emerging with rapid structural transformation
 - ▶ Stigma about quality of Chinese products and Chinese patent system
 - ▶ U.S. is both important market and top patent office for Chinese firms

▲ Anecdotal Evidence

▶ How does first U.S. patent approval affect the export performance of Chinese firms?

- Match rich data on USPTO patent applications, Chinese customs transactions, and Chinese industrial survey
- ▶ Compare successful to unsuccessful first-time applicants
- Instrument patent approval with leniency of quasi-randomly assigned USPTO examiner (Sampat and Williams, 2019; Farre-Mensa et al., 2020)
- ▶ Identify causal effect of U.S. patent and explore possible mechanisms

- 1. Successful first USPTO application improves Chinese firms' export growth
 - \blacktriangleright 17.5% higher annualized export growth for successful than that unsuccessful applicants
 - ▶ Driven by survival and expansion in incumbent destination-product markets (88%)
 - ▶ Battery of specification checks: balance tests, event study, placebo, robustness

- 1. Successful first USPTO application improves Chinese firms' export growth
 - \blacktriangleright 17.5% higher annualized export growth for successful than that unsuccessful applicants
 - ▶ Driven by survival and expansion in incumbent destination-product markets (88%)
 - ▶ Battery of specification checks: balance tests, event study, placebo, robustness
- 2. Mechanism I: monopoly power in the U.S.
 - Effect on exports of patent-related products to U.S., but even larger effect on unrelated products to destinations other than the U.S.

- 1. Successful first USPTO application improves Chinese firms' export growth
 - \blacktriangleright 17.5% higher annualized export growth for successful than that unsuccessful applicants
 - ▶ Driven by survival and expansion in incumbent destination-product markets (88%)
 - ▶ Battery of specification checks: balance tests, event study, placebo, robustness
- 2. Mechanism I: monopoly power in the U.S.
 - Effect on exports of patent-related products to U.S., but even larger effect on unrelated products to destinations other than the U.S.
- 3. Mechanism II: signaling under information frictions
 - Quality capacity: bigger effect on exports of differentiated products to high-income countries
 - **Contract credibility**: bigger effect on exports of high contract reliance industries to high rule-of-law countries

- 1. Successful first USPTO application improves Chinese firms' export growth
 - \blacktriangleright 17.5% higher annualized export growth for successful than that unsuccessful applicants
 - ▶ Driven by survival and expansion in incumbent destination-product markets (88%)
 - ▶ Battery of specification checks: balance tests, event study, placebo, robustness
- 2. Mechanism I: monopoly power in the U.S.
 - ▶ Effect on exports of patent-related products to U.S., but even larger effect on unrelated products to destinations other than the U.S.
- 3. Mechanism II: signaling under information frictions
 - Quality capacity: bigger effect on exports of differentiated products to high-income countries
 - **Contract credibility**: bigger effect on exports of high contract reliance industries to high rule-of-law countries
- 4. No Mechanisms III: financial constraints, follow-on innovation

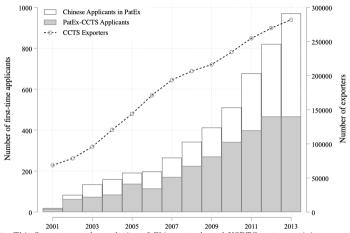
Contribution

- Effects of patenting on firm operations: we study how cross-border patent activity is related to firms' export performance
 - Williams (2013, 2017); Galasso and Schankerman (2015); Cockburn et al. (2016); Palangkaraya et al. (2017); Galasso and Schankerman (2018); Kline et al. (2019); Sampat and Williams (2019); Farre-Mensa et al. (2020); Rassenfosse et al. (2022)
- ▶ Firm productivity, innovation, and trade: we identify the causal effect of patenting conditional on firms' innovation prowess
 - Lileeva and Trefler (2010); Aw et al. (2011); Bustos (2011); Bøler et al. (2015); Aghion et al. (2018); Liu and Ma (2020); Maican et al. (2020); Coelli et al. (2022)
- ▶ Information asymmetry in international trade: we provide novel evidence that obtaining patent recognition from a global patent hub can signal quality capacity and contractual credibility for firms in developing countries
 - Rauch (1999, 2001); Banerjee and Duflo (2000); Casella and Rauch (2002); Rauch and Trindade (2003); Feenstra and Hanson (2004); Ahn et al. (2011); Chaney (2014); Macchiavello and Morjaria (2015); Monarch and Schmidt-Eisenlohr (2017); Steinwender (2018); Akerman et al. (2022); Rauch and Trindade (2022)

Data

Data Sources

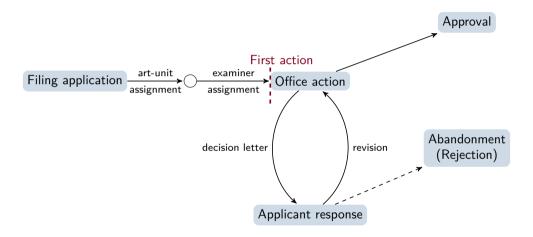
▶ USPTO Patent Examination Research Dataset (PatEx, 2001-2016)


- Rich information about universe of patent applications
 - basic information about patent applicants
 - identity of patent examiners
 - outcome at each examination step
- ▶ Chinese Customs Trade Statistics (CCTS, 2000-2016)
 - universe of export and import transactions
 - ▶ transaction-level product code, country, value, quantity, etc.
- ▶ Chinese Annual Survey of Industrial Enterprises (ASIE, 1998-2013)
 - operational and financial information of above-scale industrial firms

First-time Chinese Applicants in the USPTO

- 1. We identify Chinese applicants in PatEx based on their location information.
 - ▶ Applicant sample starts in 2001 (only approved applicants before 2001)
 - Restrict sample to incorporated applicants
 - Drop applicants from Hong Kong and Macau
 - Standardize applicants' English names
- 2. We manually match Chinese PatEx patent applicants to CCTS exporters based on name and location (from English to Chinese)
 - Cross-checks based on patent and business registration records
 - ▶ Secondary match from CCTS to ASIE standard in the literature

 \blacktriangleright Illustrative Example


Chinese Trade and USPTO Patent Activity Over Time

Note: This figure traces the evolution of Chinese trade and USPTO patent activity over time. The white bars display the number of Chinese firms that file a USPTO patent application for the first time in a given first-action year. The grey bars display the subset of these firms that can be matched to exporters in the CCTS-PatEx data. The dashed line displays the total number of CCTS exporters.

Empirical Strategy

The Patent Examination Process

➡ Illustrative Example

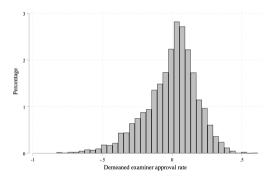
Empirical Setup

We adopt the following generalized specification to estimate the effect of a successful first U.S. patent application on Chinese firms' export growth:

$$\Delta_k Export_{it+k} \equiv \frac{Export_{it+k} - Export_{it}}{0.5(Export_{it+k} + Export_{it})}$$
$$= \beta \cdot \mathbb{1}(\text{Success First App} = 1)_{iajt} + \Gamma Z_{it} + \lambda_{s\tau} + \epsilon_{it+k}$$

- ▶ i = exporter, a = art unit, j = examiner, t = first-action year, $k \equiv 3$ in baseline
- \blacktriangleright Z_{it} controls: log initial exports, export tenure
- ▶ $\lambda_{s\tau}$: HS2 sector by application year pair fixed effects
- ▶ Coefficient of interest: β
 - OVB: patent application outcome might be correlated with unobserved firm characteristics such as inherent innovation capacity or realized innovation quality

▶ Export Growth since First-Action Year

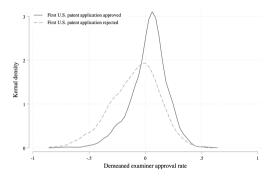

IV Strategy

Identification exploits USPTO idiosyncrasy

- ▶ Patent examiners assigned quasi-randomly within technology-determined art units
- ▶ Examiners differ in their ex-ante approval propensity

 $Approval \ Rate_{iajt} = \frac{\#Granted_{iajt}}{\#Examined_{iajt}}$

- #Granted_{iajt} (#Examined_{iajt}) = patents that examiner j has granted (examined) in art unit a prior to her decision on i's application at time t
- We demean approval rates within *at* to exclude the potential bias due to non-random assignment of art unit

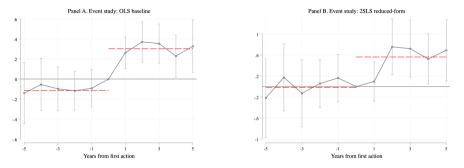

Note: This figure shows the distribution of the demeaned approval rate of USPTO patent examiners assigned to first-time patent applications by CCTS-PatEx Chinese exporters. Examiner approval rates are demeaned by art unit and firstaction year.

First-Stage IV Validity

We instrument $\mathbb{1}(\text{Success First App} = 1)_{iajt}$ by the demeaned Approval Rate_{iajt}.

Dependent variable	Successful USPTO application						
	(1)	(2)	(3)	(4)			
Examiner approval rate	0.970***	0.968^{***}	0.950***	0.955^{***}			
	(0.0689)	(0.0693)	(0.0783)	(0.0787)			
Log exports		0.00227		0.0146*			
		(0.00567)		(0.00750)			
Export tenure		-0.00789*		-0.00181			
		(0.00436)		(0.00508)			
Log employment				-0.0105			
				(0.0107)			
HS2-year fixed effects	Yes	Yes					
Industry-year fixed effects			Yes	Yes			
Ownership-year fixed effects			Yes	Yes			
Sample	CC	TS		ASIE			
F-test: $IV = 0$	198.07 * * *	195.26^{***}	147.05^{***}	147.44^{***}			
# Observations	1,156	1,156	940	940			

Note: This table reports first-stage regression results for the predictive power of an examiner's ex-ant demeaned approval rate for the success of an exporter's first USPTO patent application. The sample covers all CCTS-ASIE-PatEx matched exporters in Columns 1-2 and all CCTS-ASIE-PatEx matched exporters in Columns 3-4. Column 2 controls for initial log exports and export tenure. Column 4 further controls for log employment. Columns 3-4 include HS2 sector by year pair fixed effects, while Columns 3-4 include HS2 sector by year pair fixed effects, while Columns 3-4 include effects. Heroskedasticity-consistent standard errors are clustered by examiner art unit. *** p < 0.01, ** p < 0.01.



Note: This figure shows the kernel density of demeaned examiner approval rates separately for successful and unsuccessful patent applications. The sample covers all first-time USPTO applications by CCTS-PatEx Chinese exporters. Examiner approval rates are demeaned by art unit and first-action year.

✤ Balance Tests → Testing for Examiner Specialization

Effect of First U.S. Patent on Chinese Firm Exports

Event Study

Note: This figure plots event-study estimates for the effects of a successful first US patent application and a more lenient USPTO patent examiner on the exports of first-time Chinese applicants. The sample covers all CCTS-PatEx matched exporters. The dependent variable is log exports. The regressors comprise interactions of time dummies with an indicator for a successful patent application in Panel A and with the patent examiner's demeaned approval rate in Panel B. Both regressions include firm fixed effects and HS2 sector by year pair fixed effects. Heteroskedasticity-consistent standard errors are clustered by examiner art unit.

First US Patent Promotes Chinese Firms' Export Growth

Dependent variable	Annualized 3-year export growth								
	(1)	(2)	(3)	(4)	(5)	(6)			
Successful USPTO application	0.0667***	0.172^{***}	0.175***	0.0599^{**}	0.217^{***}	0.201***			
	(0.0214)	(0.0564)	(0.0522)	(0.0253)	(0.0691)	(0.0621)			
Log exports			-0.0367^{***}			-0.0457^{***}			
			(0.00492)			(0.00593)			
Export tenure			-0.00299			-0.0141***			
• • ·			(0.00366)			(0.00371)			
Log employment						0.0294^{***} (0.00856)			
						(0.00850)			
HS2-year fixed effects	Yes	Yes	Yes						
Industry-year fixed effects				Yes	Yes	Yes			
Ownership-year fixed effects				Yes	Yes	Yes			
Model	OLS	2SLS	2SLS	OLS	2SLS	2SLS			
Sample		CCTS			CCTS-ASI	E			
F-stat		198.07	195.26		147.05	147.44			
# Observations	1,156	1,156	1,156	940	940	940			

Note: This table reports the estimated effect of a successful first U.S. patent application on the subsequent export growth of Chinese applicants. The dependent variable is the annualized 3-year export growth rate. The sample covers all CCTS-PAEX matched exporters in Columns 1-3 and all CCTS-ASIE-PAEX matched exporters in Columns 4-6. Columns 1 and 4 are estimated with OLS, while Columns 2, 3, 5, and 6 are estimated with 2SLS, using the demeaned examiner approval rate as an instrument. Column 5 arounds for initial log exports and export tenure. Column 6 further controls for initial log exports and export tenure. Column 6 turther controls for genelogment. Columns 1-3 include HS2 sector by year pair fixed effects, while Columns 4-6 include CIC2 industry by year and ownership type by year pair fixed effects. Heteroskedasticity-consistent standard errors are clustered by examiner art unit. *** p < 0.01.

▶ Placebo Test → Alternative Specifications → Controlling for Global Patenting

▶ The Effect of Second Application

Firm Export Growth Decomposition

The export growth rate can be decomposed into two components.

$$\Delta_k Export \equiv \frac{Export_k - Export_0}{0.5(Export_k + Export_0)}$$
$$= \underbrace{\frac{\sum_{\omega \in \Omega_0} (x_{\omega k} - x_{\omega 0})}{0.5(Export_k + Export_0)}}_{Incumbent\ Component} + \underbrace{\frac{\sum_{\omega \in \Omega_k \setminus \Omega_0} x_{\omega k}}{0.5(Export_k + Export_0)}}_{New\ Component}$$

► The "incumbent" component: contribution of incumbent destination-product pairs

- **The "continuing" component**: Value change of continuing destination-product pairs
- **The "drop" component**: Value destruction from dropped destination-product pairs
- ► **The "new" component**: contribution of value creation from newly added destination-product pairs

Firm Export Growth Decomposition

Main driver (88%): survival and expansion in incumbent destination-product markets

Dependent variable		nent of annualized dest-prod markets	3-year export growth New dest-prod markets			
	(1)	(2)	(3)	(4)		
Successful USPTO application	0.153^{***} (0.0486)	0.153*** (0.0487)	0.0195 (0.0309)	0.0217 (0.0260)		
Log exports		-0.00562 (0.00407)		-0.0311*** (0.00232)		
Export tenure		(0.00407) -0.0000904 (0.00314)		(0.00232) -0.00290^{*} (0.00149)		
HS2-year fixed effects	Yes	Yes	Yes	Yes		
F-stat	198.07	195.26	198.07	195.26		
# Observations	1,156	1,156	1,156	1,156		

Note: This table reports the estimated effect of a successful first U.S. patent application on constituent components of the subsequent export growth of Chinese applicants. The dependent variable in Columns 1-2 and 3-4 is the contribution of expansion in a firm's incumbert and new destination-product markets respectively to its total export growth. The sample covers all CCTS-PAIEX matched exporters. All columns 2 and 4 control for initial log exports and export the argument and new destination with 28LS, using the demanded examiner approval rate as an instrument. Columns 2 and 4 control for initial log exports and export tenuer. All columns include HS2 sector by year pair fixed effects. Heteroskedasticity-consistent standard errors are clustered by examiner art unit. *** p < 0.01, ** p < 0.05,

▶ Three-part Decomposition

▶ CCTS-ASIE Sample

▶ Export Margins

▶ Exports by Firm-Destination-Product

Why Does First U.S. Patent Boost Chinese Firm Exports?

Mechanism Test I: Firm Export Growth Decomposition

We decompose each firm's export growth by product/destination groups:

$$\Delta_k EX_i \equiv \frac{EX_{ik} - EX_{i0}}{0.5(EX_{ik} + EX_{i0})} = \sum_{p \in P} \sum_{d \in D} \frac{EX_{ipdk} - EX_{ipd0}}{0.5(EX_{ik} + EX_{i0})},$$

 \blacktriangleright p: product category

- Technologically related versus technologically unrelated
- ▶ High quality differentiation versus Low quality differentiation
- ▶ High contract reliance versus low contract reliance
- \blacktriangleright d: destination category
 - ▶ U.S. versus non-U.S.
 - ▶ high GDP per capita versus low GDP per capita
 - ▶ high rule-of-law index versus low rule-of-law index

▶ We regress each of the components on first U.S. patent application outcome to identify the "main driver" of patent-induced export growth

Mechanism Test II: Export Growth Across Markets Within Firms

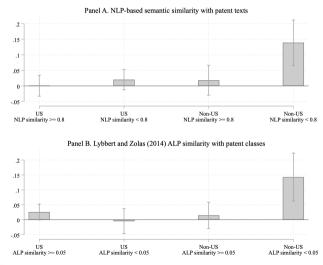
We apply a specification similar to Eckel et. al (2015):

 $y_{ipdt+k} = \beta_w \cdot \mathbb{1}(\text{Successful First Application} = 1)_{it} \cdot C(d) + \Gamma_w Z_{ipdt} + \eta_{i\tau} + \lambda_{p\tau} + \lambda_{d\tau} + \epsilon_{ipdt+k}$

- \blacktriangleright p denotes HS6 products, d denotes destination countries.
- y_{ipdt+k} is the outcome variable
 - ▶ Extensive margin: survival dummy of incumbent pairs
 - ▶ Intensive margin: value/price growth of continuing pairs
- \blacktriangleright C(d): destination characteristics (U.S. indicator, GDP per capita, rule-of-law index)
- \blacktriangleright Z_{ipdt} : log initial destination-product pair export and relative export tenure
- ▶ $\lambda_{p\tau}$ ($\lambda_{d\tau}$): product (destination) by application year fixed effects
- ▶ $\eta_{i\tau}$: firm fixed effects to control for heterogeneity across firms
- ▶ Coefficient of interest: β_w (within-firm heterogeneous responses across destinations)

Mechanism I: Monopoly Power

Hypothesis 1: U.S. patent rights strengthen exporters' monopoly power and sales of protected products in the U.S. market, but not of other destination-product markets


To test Hypothesis 1, we examine:

- ▶ whether the patent effect is driven by technologically related products sold in the U.S.
- ▶ whether the values and prices of those export flows are improved

We identify products that are technologically related to a given patent based on two alternative semantic similarity analyses

- Apply NLP techniques to compute the semantic similarity between textual descriptions of individual patents and HS-6 products (similar to Argente et al. 2023)
 The NLP-based semantic similarity
- Apply Algorithmic Links with Probabilities (ALP) weighting methods by Goldschlag, et al. (2020) to the descriptions of USPC technology classes and HS-6 products
 The ALP weighting algorithm

Weak Evidence for Monopoly Power Mechanism Evidence 1a: Firm export growth decomposition

Weak Evidence for Monopoly Power Mechanism Evidence 1b: Export Growth Across Markets Within Firms

Dependent variable	Export value growth			Export price growth			
Technologically related products	All (1)	Yes (2)	No (3)	All (4)	Yes (5)	No (6)	
Successful USPTO application \times U.S.	0.112	-0.120	0.295	0.0497	0.0186	0.0322	
Succession CSF FO application × 0.5.	(0.112)	(0.1120)	(0.194)	(0.0647)	(0.0995)	(0.103)	
F-stat	6.96	20.06	3.89	6.33	25.19	3.43	
# Observations	38,824	14,601	23,517	31,226	12,129	18,524	

Panel A. NLP-based semantic similarity with patent texts

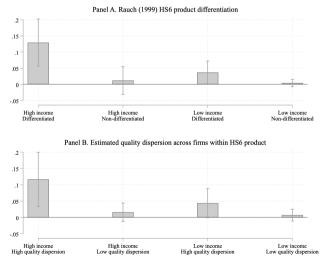
Panel B. Lybbert and Zolas (2014) ALP similarity with patent classes

Dependent variable	Export value growth			Export price growth			
Technologically related products	All	Yes	No	All	Yes	No	
	(1)	(2)	(3)	(4)	(5)	(6)	
Successful USPTO application \times U.S.	0.112 (0.115)	-0.133 (0.243)	0.139 (0.121)	0.0497 (0.0647)	0.0432 (0.165)	0.0149 (0.0738)	
F-stat	6.96	7.83	5.93	6.33	8.82	5.23	
# Observations	38,824	7,774	30,411	31,226	6,634	24,061	

Controls	Firm-dest-prod level log exports and relative export tenure
Fixed effects	Firm-year, HS6-year, and destination-year fixed effects

Note: This table reports the heterogeneous effect of a successful first U.S. patent application on the growth in export values and prices across destinations and products within firms, for the sample of continuing firm-destination-product triplets of CCTS-PatEx matched exporters. The variable U.S. is an indicator equal to 1 if the export destination is the U.S. The standalone term of Successful USPTO application is absorbed by the firm by year pair fixed effects. Columns 1 and 4 cover all products, while Columns 2 and 5 (Columns 3 and 6) restrict the sample to products that are technologically related (unrelated) to a firm's patent. Products are technologically related to a patent or patent technology class if their descriptions have semantic similarity above 80% based on the NLP method in Panel A (see Appendix 7? for details) and ALP weights above 6% based on Lybbert and Zolas (2014) approach in Panel B. All columns are estimated with 2SLS, using the demended examiner approval rate as an instrument. All columns three lower particular with part and Heterosekasticity-consistent standard errors are clustered by examiner at run it. *** p < 0.05, ** p < 0.1.

Mechanism II: Asymmetric Information


Hypothesis 2: U.S. patent grant constitutes a signal that alleviates information frictions in international trade

- ▶ Quality capacity signal: firms' output quality capacity under quality differentiation
- ▶ Contract credibility signal: firms' trustworthiness under contractual frictions

To test Hypothesis 2, we examine:

- (quality capacity) whether U.S. patents increase firm exports disproportionately more for products with greater scope for quality differentiation, in richer destinations
- (contract credibility) whether U.S. patents increase firm exports disproportionately more for products with greater contract reliance, to destinations with stronger contract enforcement

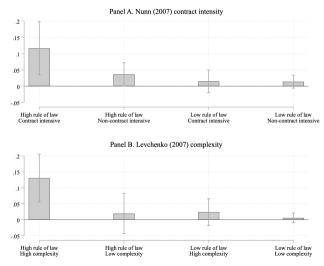
Strong Evidence for Quality Capacity Signal Evidence 2a: Firm export growth decomposition

Strong Evidence for Quality Capacity Signal

Evidence 2b: Export Growth Across Markets Within Firms

Panel A. Rauch (1999) HS6 product differentiation

Dependent variable	Su	rvival Indica	ator	Exp	ort value gr	owth
Differentiated products	All	Yes	No	All	Yes	No
	(1)	(2)	(3)	(4)	(5)	(6)
Successful USPTO application $\times \ln(\text{GDP per capita})$	0.0207^{*}	0.0302^{**}	0.00159	0.00255	-0.00423	0.0330
	(0.0119)	(0.0130)	(0.0248)	(0.0194)	(0.0220)	(0.0407)
F-stat	32.59	26.78	49.92	21.14	18.35	16.92
# Observations	85,955	70,123	10,555	38,665	32,251	4,112


Panel B. Estimated quality dispersion across firms within HS6 product

Dependent variable	Survival Indicator			Export value growth		
High quality-dispersion products	All	Yes	No	All	Yes	No
	(1)	(2)	(3)	(4)	(5)	(6)
Successful USPTO application $\times \ln(\text{GDP per capita})$	0.0207^{*}	0.0285^{**}	-0.0107	0.00255	0.000385	0.0142
	(0.0119)	(0.0134)	(0.0228)	(0.0194)	(0.0236)	(0.0217)
F-stat	32.59	25.99	56.73	21.13	15.27	37.11
# Observations	85,955	71,677	13,557	38,665	31,753	6,430

Controls	Firm-dest-prod level log exports and relative export tenure
Fixed effects	Firm-year, HS6-year, and destination-year fixed effects

Note: This table reports the heterogeneous effect of a successful first U.S. patent application on the survial probability and export growth across destinations and products within firms. The variable in(2019 per capita) is the log CDP per capita) as the log CDP per log CDP per capita) as the log CDP per per capita) as the log CDP per capita)

Strong Evidence for Contract Credibility Signal Evidence 3a: Firm export growth decomposition

Strong Evidence for Contract Credibility Signal Evidence 3b: Export Growth Across Markets Within Firms

Dependent variable	Sur	vival Indica	itor	Expe	ort value gr	owth
High-contract-intensity industries	All	Yes	No	All	Yes	No
	(1)	(2)	(3)	(4)	(5)	(6)
Successful USPTO application \times rule of law	0.0308**	0.0358^{**}	0.0253	0.00472	0.00269	0.0261
	(0.0149)	(0.0147)	(0.0304)	(0.0242)	(0.0233)	(0.0534)
F-stat	25.96	23.85	21.73	17.49	14.31	13.43
# Observations	86,319	56,481	29,237	38,752	26,283	12,009

Panel A. Nunn (2007) contract intensity

Panel B. Levchenko (2007) complexity

Dependent variable	Survival Indicator		itor	Exp	ort value gr	owth
High-complexity industries	All	Yes	No	All	Yes	No
	(1)	(2)	(3)	(4)	(5)	(6)
Successful USPTO application \times rule of law	0.0308**	0.0374^{**}	0.0152	0.00472	-0.00686	0.0523
	(0.0149)	(0.0148)	(0.0252)	(0.0242)	(0.0253)	(0.0437)
F-stat	25.96	20.37	26.27	17.49	15.65	10.41
# Observations	86,319	54,390	31,388	38,752	25,162	13,106

Controls	Firm-dest-prod level log exports and relative export tenure
Fixed effects	Firm-year, HS6-year, and destination-year fixed effects

Note: This table reports the heterogeneous effect of a successful first U.S. patent application on the survival probability and export growth across destinations and products within firms. The variable rule of law is the index value of rule of law of the destination country. The standalone term of Successful USPTO application is absorbed by the firm by year pair fixed effects. The sample in Columns 1-3 (Columns 4-6) covers all incumbent (all continuing) firm-destination-product triplets for CCTS-PAtEx matched exporters. Columns 1-3 (low) contrast relance above (below) the median. Industries 'contrast relance is proxied with the Nunn (2007) measure of contrast relance is proxied with the Nunn (2007) measure of contrast relance is proxied with the Nunn (2007) measure of contrast relance is proxied with the Nunn (2007) measure of contrast relance is proxied with the Nunn (2007) measure of contrast relance is proxied with the Nunn (2007) measure of contrast relance is proxied with the Nunn (2007) measure of contrast relance is proxied with the Nunn (2007) measure of contrast relance above (below) the median include HS6 by year, destination by year, and firm by year pair fixed effects, and control for firm-destination-product level initial log exports and relative tenure. Heteroskedasticity-consistent standard effects, and control for firm-destination-product level initial log exports and relative tenure. Heteroskedasticity-consistent standard effects areas an instrument at unit. *** p < 0.01, ** p < 0.01, ** p < 0.01.

Ruling Out Other Mechanisms

► Financial constraints

- ▶ U.S. patents may signal higher expected future profits and thereby attract external investors and ease financial frictions faced by exporters

► Follow-on innovation

- ▶ First U.S. patent may improve exporters' expectations about their future innovation or patenting success, and hence induce them to conduct more R&D, upgrade product quality, and climb up the value chain
- However, we find little evidence that the first U.S. patent stimulates patenting in China
 Patent filing in China

Conclusions

Conclusions

- ▶ We identify a large causal effect of a successful first U.S. patent application on a Chinese firm's subsequent export growth
- ▶ Unpacking potential mechanisms, we find evidence consistent with U.S. patents signaling product quality and contractual credibility under asymmetric information
 - ▶ Limited evidence for monopoly power mechanism
 - ▶ No evidence for financial frictions and follow-on innovation mechanisms
- ▶ Open questions
 - Global patent policy
 - ▶ Welfare effects of patent hubs
 - Trade and patents with GVCs and MNCs

Thanks!

Appendix

Anecdotal Evidence

► GRG Banking Equipment: the

company filed its first U.S. patent in 2011. *People.com*, the online version of the largest state-owned newspaper *People Daily*, described the event as "another breakthrough for Chinese ATM companies in overseas, especially in Europe and America."

▶ Founder Microelectronics: the company filed its first U.S. patent in 2012. On its official website, the company described the patent as "another important milestone of Founder Microelectronics' IP work."

An Illustrative Example of the Matching Procedures

Take Shanghai Microelectronics Equipment Co. as an example.

- 1. The company filed its first U.S. patent application on Aug. 19, 2005.
 - ▶ It was about an electronic component.
 - The patent was granted on Mar. 4, 2008 (it normally takes 2.5-3 years).
- 2. We search the keywords "Microelectronics Equipment" and "Shanghai" in search engines.
 - The company's registered Chinese name is: 上海微电子装备有限公司
 - We cross-check the names with a database of company registrations (*Tianyancha*).

(45) Date of Patent: Mar. 4, 2008
6,835,941 B1* 12/2004 Tanaka 250/491.1 6,864,602 B2* 3/2005 Korenaga
6,927,505 B2 * 8/2005 Binnard et al
Han-Sam Cho and Hyun-Kyo Jung, Analysis and Design of Syn- chronous Permanent-Magnet Planar Motors, IEEE Transactions of Energy Conversion, vol. 17, No. 4, Dec. 2002.
Ir. J.C. Compter, Electro-dynamic planar motor, Department of Mechanical Engineering, Section Precision Engineering, Technical University Eindhoven, Eindhoven, The Netherlands, Aug. 13, 2003, Science Direct, Precision Engineering 28 (2004) 171-180, available
at www.sciencedirect.com.
(Continued)
Primary Examiner—Darren Schuberg Assistant Examiner—Iraj A. Mohandesi
(74) Attorney, Agent, or Firm—Michael Best & Friedrich LLP
(57) ABSTRACT
According to the invention, configurations of X-windings and Y-windings in a synchronous permanent planar motor are improved, X-windings and Y-windings overlap in the direction normal to the planar magnet array and distribute on the entire surface of the thrust core, such that effective wires in the X-windings and Y-windings are lengthered and
increased in number, therefore the electromagnetic force generated by the SPMPM of this invention is increased
correspondingly, X-winiting, and Y-winitings are mounde on a thrust core made of iron matterial, thus the electromag- netic force is further increased, in addition, two separate anii-yawing member are provided on the mover for com- tensity years of the mover, accordingly interference to properly and the increased of the electromagnetic force for progeting is eliminated. 8 Claims, 6 Drawing Sheets

Technology Classes of First Patent Applications

Sample	e: all first-time	e USPTO patent applicants from China		
Rank	USPC class	USPC title	Number	Percentage (%
1	514	Drug, bio-affecting and body treating compositions	266	5.55
2	424	Drug, bio-affecting and body treating compositions	196	4.09
3	435	Chemistry: molecular biology and microbiology	144	3.01
4	362	Illumination	112	2.34
5	439	Electrical connectors	84	1.75
6	257	Active solid-state devices	77	1.61
7	455	Telecommunications	71	1.48
8	361	Electricity: electrical systems and devices	69	1.44
9	428	Stock material or miscellaneous articles	68	1.42
10	345	Computer graphics processing and selective visual display systems	67	1.40
		Other	3637	75.91
Sample	e: first-time U	SPTO patent applicants matched to CCTS		
Rank	USPC class	USPC title	Number	Percentage (%
1	424	Drug, bio-affecting and body treating compositions	117	4.13
2	514	Drug, bio-affecting and body treating compositions	96	3.39
3	362	Illumination	86	3.04
4	435	Chemistry: molecular biology and microbiology	80	2.83
5	439	Electrical connectors	66	2.33
6	428	Stock material or miscellaneous articles	50	1.77
7	257	Active solid-state devices	45	1.59
8	345	Computer graphics processing and selective visual display systems	41	1.45
9	361	Electricity: electrical systems and devices	40	1.41
10	536	Organic compounds	34	1.20
		Other	2116	76.86

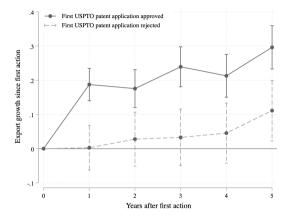
Note: This table shows the top 10 technology classes of the first USPTO patent applications filed by Chinese applicants. The top panel considers all first-time Chinese applicants to the USPTO. The bottom considers the subset of first-time Chinese applicants to the USPTO in the matched CCTS-PatEx sample.

Comparison of U.S. Patent Applicants and Other Exporters

	Matched patent applicants		Other	exporters	Difference	
	Mean	St. Dev.	Mean	St. Dev.	Mean	St. Dev.
Log exports	15.28	2.71	13.16	2.34	2.12***	0.021
Log exports to the U.S.	10.01	6.61	5.00	6.14	5.01^{***}	0.054
Log exports to OECD	13.14	5.11	9.94	5.65	3.21^{***}	0.050
Share of exports to the U.S.	0.22	0.30	0.14	0.28	0.090^{***}	0.0025
Share of exports to OECD	0.54	0.36	0.52	0.41	0.024^{***}	0.0037
Number of products	16.18	40.87	14.58	48.41	1.59^{***}	0.43
Number of destinations	19.68	21.14	8.39	12.76	11.29^{***}	0.11
Avg exports per dest-prod (1,000 RMB)	1423.76	8081.73	405.49	5826.35	1018.28^{***}	51.67
# Observations		12,850	2,3	18,957		

Note: This table compares CCTS-PatEx matched exporters to other CCTS exporters. Columns 1-2 and 3-4 show the mean and standard deviation of key export statistics in the panel, respectively for CCTS-PatEx matched Chinese patent applicants and for all other CCTS exporters. Columns 5 and 6 show the mean and standard deviation of the difference in export statistics between the two groups. *** p < 0.01, ** p < 0.05, ** p < 0.01.

Comparison of U.S. Patent Applicants and Other Exporters


	Matched patent applicants		Other exporters		Differences	
	Mean	sd	Mean	sd	Mean	sd
Log value of processing export	9.04	7.63	4.86	6.37	4.18***	0.056
Log value of export of heterogeneous products	13.41	5.19	11.25	4.87	2.15^{***}	0.043
Log value of export to high-RLI countries	14.45	4.08	11.80	4.34	2.65^{***}	0.038
Log value of export to high-IPR countries	15.00	3.13	12.44	3.55	2.57^{***}	0.031
Share of processing export	0.34	0.41	0.20	0.35	0.14^{***}	0.003
Share of heterogeneous products	0.75	0.39	0.76	0.39	-0.0070**	0.003
Share of export to high-RLI countries	0.81	0.27	0.76	0.34	0.043^{***}	0.003
Share of export to high-PRI countries	0.90	0.20	0.85	0.28	0.051^{***}	0.002
Number of observations		12,850	2,31	8,957		

Note: This table displays the additional comparison of PatEx-CCTS matched exporters and other exporters in CCTS. Column 1 and 2 show the mean and standard deviations of key export statistics of the PatEx-CCTS matched Chinese patent applicants across all years; Column 3 and 4 show the mean and standard deviations of key export statistics of the other exporters. Column 5 and 6 show the mean and standard deviation of the differences in export statistics between the two groups. *** p < 0.01, ** p < 0.05, * p < 0.1.

An Illustrative Example of the Patent Examination Process Still take Shanghai Microelectronics Equipment Co. as an example.

- 1. The company filed its first patent application (US7339289B2) on Aug. 19, 2005.
- 2. The case was first assigned to the art unit 2834, and then assigned to an examiner, Iraj Mohandesi, on Jul. 10, 2006.
 - ▶ Mr. Mohandesi examined 419 patent applications, of which 365 were finally approved.
- 3. The first action (a non-final rejection) was issued on Aug. 10, 2006.
 - The first action decision normally takes place about 1.5-2 years after the initial filing (Dyer et al., 2020).
 - We define the first *Notice of Allowance* or *Non-final Rejection*, whichever comes first, as the first action by USPTO.
 - ▶ The first action (initial decision) date is used as the starting point of the effect (Kline et al., 2019; Farre-Mensa, Hegde, and Ljungqvist, 2020).
 - Much of the uncertainty is resolved by the first action.
 - The application underwent another round of non-final rejection before obtaining a notice of allowance.
- 4. The patent was granted on Mar. 4, 2008.

Export Growth since First Application

Note: This figure shows the average export growth rate of successful and unsuccessful first-time Chinese applicants to the USPTO, following the first action year of the application. Export growth is measured as $g_{ik} = (exp_{it+k} - exp_{it})/0.5(exp_{it+k} + exp_{it})$, where exp_{it} is the exports of firm *i* in *t*, the first action year of its first patent application, and exp_{it+k} is the exports of firm *i* k years after *t*. 95% confidence intervals are represented by the capped spikes.

Balance Tests

Sample	Firm Characteristic	$Successful \ USPTO \ application$	$Examiner\ approval\ rate$
	Log exports (CCTS)	-0.0209	0.0893
	Log exports (CC15)	(0.162)	(0.463)
	Log # products	-0.149*	-0.0974
	108 // Freduces	(0.0756)	(0.227)
CCTS (Sample size $= 1,156$)	Log # destinations	-0.0252	0.141
	0.1	(0.0746)	(0.197)
	Log avg exports per dest-prod	0.0942	0.0223
		(0.125)	(0.373)
	Log sales	0.0363	-0.366
		(0.143)	(0.341)
	Log employment	-0.0109	-0.0127
		(0.0977)	(0.244)
CCTS-ASIE (Sample size = 940)	Log exports (ASIE)	0.241	-0.343
		(0.189)	(0.532)
	Operating profit margin	0.00974	-0.0323
		(0.00930)	(0.0223)

Note: This table reports results from regressing CCTS or CCTS-ASIE matched exporters' *ex-mat* characteristics on an indicator for a successful patent application and on examiner approval rate. The CCTS sample covers continuing exporters matched to USPTO patent applicants. The CCTS-ASIE sample covers all continuing CCTS exporters matched to both USPTO and ASIE. Regressions on the CCTS sample control for HS2 sector by year pair fixed effects. Regressions on the CCTS-ASIE sample control for CIC2 industry by year and ownership type by year pair fixed effects. Heteroskedasticity-consistent standard errors are clustered by examiner at unit. *** p < 0.01, ** p < 0.01, ** p < 0.01, **

Balance Tests

Sample	Firm Characteristic	Successful USPTO application	Examiner approval rat
	Share of tech. related exports (conservative with NLP)	0.0219	0.145^{**}
		(0.0286)	(0.0666)
	Share of tech. related exports (liberal with ALP)	0.00972	0.113
		(0.0306)	(0.0708)
	Share of differentiated exports	-0.0376*	0.0427
		(0.0201)	(0.0608)
	Share of high-quality-dispersion exports	0.0182	0.0302
		(0.0263)	(0.0607)
	Share of contract intensive exports	-0.00328	0.0206
CCTS (Sample size $= 1,156$)		(0.0138)	(0.0371)
	Share of high-complexity exports	-0.00101	0.0268
		(0.0232)	(0.0571)
	Share of exports to the U.S.	-0.0405*	0.0127
		(0.0220)	(0.0466)
	Share of exports to high-income countries	-0.0452**	-0.0349
		(0.0175)	(0.0431)
	Share of exports to high-rule-of-law index countries	-0.0329**	-0.0616
		(0.0146)	(0.0390)

Note: This table reports results from regressing exporters' ex-ante characteristics on an indicator for a successful patent application and on examiner approval rate. The sample covers all continuing CCTS-PAEX matched exporters. All regressions control for HS2 by application year pair fixed effects. Heteroskedasticity-consistent standard errors are clustered by examiner art unit. "*** p < 0.01, "* p < 0.05, " p < 0.05,"

Testing for Examiner Specialization

Righi and Simcoe (2019) point out that examiners may specialize in certain patents.

- Validation test: "[U]nder random assignment, the inclusion of control variables should not affect the magnitude of the estimated coefficients."
 - We use an alternative instrument that also excludes technology class by application year fixed effects.
 - We include examiner characteristics as controls (examiner's experience and number of foreign/Chinese patents examined).
- ▶ The point estimates fluctuate between 80% to 100%.

в	\mathbf{a}	c	k

Dependent variable	Su	ccessful USI	TO applicat	ion
	(1)	(2)	(3)	(4)
Examiner approval rate (residual 1)	0.968***	0.870***		
	(0.0693)	(0.0894)		
Examiner approval rate (residual 2)			0.993^{***}	0.872^{***}
			(0.0678)	(0.0882)
Log exports	0.00227	0.00165	0.00323	0.00233
	(0.00567)	(0.00572)	(0.00579)	(0.00584)
Export tenure	-0.00789^{*}	-0.00766*	-0.00770*	-0.00741*
	(0.00436)	(0.00435)	(0.00453)	(0.00448)
Log examiner's Chinese applications		-0.0142		-0.0170
		(0.0230)		(0.0235)
Log examiner's foreign applications		0.0610**		0.0767***
		(0.0267)		(0.0269)
Log examiner's years of experience		-0.0488		-0.0601
		(0.0425)		(0.0428)
HS2-year fixed effects	Yes	Yes	Yes	Yes
F-test: $IV = 0$	195.26^{***}	94.70^{***}	214.36^{***}	97.61^{***}
# Observations	1,156	1,156	1,156	1,156

Note: This table reports validation test results for the ecogeneity of patent assignment to examiners. The sample covers all CCTS-PatEs matched exporters. Examiner approval rate (residual 2) is an examiner's approval rate (residual 2) is an examiner's approval rate (metaned by both rat unit and first-action year. Examiner approval rate (residual 2) is an examiner's approval rate (metaned by both rat unit by first-action year. All columns control for HS2 sector by year pair fixed effects. Heteroskedasticity-consistent standard errors are clustered by examiner at unit: ** p < 0.01, ** > 0.0.

Placebo Test

Dependent variable	Annualized	d 3-year expor	t growth, 3-year lagged
	(1)	(2)	(3)
Successful USPTO application	0.00381	0.00926	0.0115
	(0.00845)	(0.0223)	(0.0215)
Log exports, 3-year lagged			-0.00952***
			(0.00146)
Export tenure, 3-year lagged			-0.00917 ***
			(0.00136)
HS2-year fixed effects	Yes	Yes	Yes
Model	OLS	2SLS	2SLS
F-stat		154.13	152.46
# Observations	947	947	947

Note: This table reports the estimated effect of a successful first U.S. patent application on the 3-year lagged annualized export growth of Chinese applicants as a placebo text. The sample covers all CCTS-PatEx matched exporters. Column 1 is estimated with OLS, while Columns 2 and 3 are estimated with 2SLS, using the demeaned examiner approval rate as an instrument. Column 3 controls for 3-year lagged log exports and export tenure. All columns include HS2 sector by year pair fixed effects. Heteroskedasticity-consistent standard errors are clustered by examiner art unit. *** p < 0.01. ** p < 0.1.

Alternative Specifications

Dependent variable	Annualized 3-year export growth								
	Baseline	Alternative IV	Bootstrap	Examiner control	1	lternative FE	ls .		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)		
Successful USPTO application	0.175***	0.160***	0.180***	0.247***	0.179^{***}	0.193^{***}	0.172^{***}		
	(0.0522)	(0.0540)	(0.0530)	(0.0734)	(0.0487)	(0.0513)	(0.0492)		
Log exports	-0.0367***	-0.0367***	-0.0382***	-0.0367***	-0.0398***	-0.0376***	-0.0379***		
	(0.00492)	(0.00491)	(0.00468)	(0.00499)	(0.00473)	(0.00400)	(0.00405)		
Export tenure	-0.00299	-0.00313	-0.00207	-0.00248	-0.000505	-0.00242	-0.00163		
	(0.00366)	(0.00364)	(0.00363)	(0.00381)	(0.00381)	(0.00294)	(0.00305)		
Log examiner's Chinese applications				0.000780					
· · · ·				(0.0149)					
Log examiner's foreign applications				-0.0204					
				(0.0210)					
Log examiner's years of experience				0.00210					
				(0.0278)					
HS2-application year fixed effects	Yes	Yes	Yes	Yes					
HS2-first-action year fixed effects	100	100	100		Yes				
Application year fixed effects						Yes			
First-action year fixed effects							Yes		
F-stats	195.26	214.36		94.70	156.55	187.19	182.60		
Observations	1,156	1,156	1.156	1,156	1.171	1.282	1.282		

Note: This table reports the estimated effect of a successful first U.S. patent application on the subsequent export growth of Chinese applicants, controlling for patent family submissions to EPO, JPO, and CNIPA. The dependent variable is the annualized 3-year export growth rate. All columns include an indicator for whether an application from the same patent family is verified respectively with FPO, JPO, and CNIPA. Column 1 is estimated with OLS, while Columns 2 and 3 are estimated with SZS, using the demenand examiner approval rate as an instrument. Heteroskinatic/icvo-nsistent standard errors are clustered by examiner at unit. *** p < 0.01, ** p < 0.03, * p < 0.03, * p < 0.01, *

Controlling for Global Patenting

Dependent variable	Annualiz	ed 3-year expe	ort growth
	(1)	(2)	(3)
Successful USPTO application	0.0674***	0.187***	0.171**
	(0.0200)	(0.0529)	(0.0678)
Successful USPTO application× USPTO priority			0.0434
			(0.106)
Log exports	-0.0378^{***}	-0.0380***	-0.0381**
	(0.00493)	(0.00501)	(0.00503)
Export tenure	-0.00344	-0.00239	-0.00227
	(0.00349)	(0.00367)	(0.00370)
USPTO priority	-0.00218	-0.00693	-0.0351
	(0.0247)	(0.0250)	(0.0775)
EPO application	0.00134	0.00357	0.00475
	(0.0234)	(0.0242)	(0.0243)
JPO application	-0.0334	-0.0380	-0.0376
	(0.0232)	(0.0238)	(0.0239)
CNIPA application	0.0197	0.0190	0.0187
	(0.0240)	(0.0245)	(0.0243)
HS2-year fixed effects	Yes	Yes	Yes
Model	OLS	IV	IV
F-stat		191.28	57.73
# Observations	1,101	1,101	1,101

The Effect of Second Application

Dependent variable	Annualized 3-year export growth					
	(1)	(2)	(3)			
Successful second USPTO application	0.0262 (0.0177)	0.0309 (0.0853)	0.0502 (0.0824)			
Log exports			-0.0104***			
			(0.00278)			
Export tenure			-0.00167			
			(0.00243)			
HS2-year fixed effects	Yes	Yes	Yes			
Model	OLS	2SLS	2SLS			
F-stat		10.87	11.19			
# Observations	274	274	274			

Note: This table reports the estimated effect of a successful second U.S. patent application on the subsequent export growth of Chinese applicates, conditional on a first patent application being successful. The dependent variable is the annualized 3-year export growth rate. The sample covers CUTS-PatkEr matched exporters with a successful first U.S. patent application. Column 1 is estimated with OLS, while Columns 2 and 3 are estimated with 25%, using the demension examines approval rate as an instrument. Column 3 controls fixed effects. Heteroskedasticity-consistent standard errors are clustered by examiner art unit. *** p < 0.01. **p < 0.01.

Three-part Decomposition

Dependent variable	Components of annualized 3-year export growth							
	Continuing	dest-prod markets	Dropped des	t-prod markets	New dest-	New dest-prod markets		
	(1)	(2)	(3)	(4)	(5)	(6)		
Successful USPTO application	0.0678* (0.0358)	0.0681* (0.0349)	-0.0850*** (0.0311)	-0.0851*** (0.0309)	0.0195 (0.0309)	0.0217 (0.0260)		
Log exports		-0.00977*** (0.00292)		-0.00415* (0.00241)		-0.0311*** (0.00232)		
Export tenure		-0.00244 (0.00209)		-0.00235 (0.00204)		-0.00290* (0.00149)		
HS2-year fixed effects	Yes	Yes	Yes	Yes	Yes	Yes		
F-stat	198.07	195.26	198.07	195.26	198.07	195.26		
# Observations	1,156	1,156	1,156	1,156	1,156	1,156		

Note: This table reports the estimated effect of a successful first U.S. patent application on constituent components of the export growth of Chinese applicants. The sample covers all CCTS-Patter matched coverse. All columns are estimated with 25LS, using the demeaned examiner approval rate as an instrument. Columns 2, 4, and 6 control for initial log exports and export tenure. All columns include HS2 sector by year pair fixed effects. Heteroskedattcity-consistent standard errors are clustered by examiner at unit. *** p < 0.01. ** p < 0.05. ** p < 0.05.

ASIE Decomposition

Dependent variable	Components of annualized 3-year export growth Incumbent dest-prod markets New dest-prod markets						
	(1)	(2)	(3)	(4)			
Successful USPTO application	0.157** (0.0628)	0.153** (0.0610)	0.0598** (0.0286)	0.0480** (0.0230)			
Log exports		-0.0120** (0.00550)		-0.0337*** (0.00323)			
Export tenure		-0.00724** (0.00332)		-0.00685*** (0.00156)			
Log employment		0.0110 (0.00719)		(0.00100) 0.0184^{***} (0.00421)			
In Annature Court of Courts	Yes	Yes	Yes	Yes			
Industry-year fixed effects Ownership-year fixed effects	Yes	Yes	Yes	Yes			
			100				
F-stat	147.05	147.44	147.05	147.44			
# Observations	940	940	940	940			

Note: This table reports the estimated effect of a successful first U.S. patent application on constituent components of export growth of Chinese applicatuats in the subsample of CCTS-ASE-PatEs matched exporters. All columns are estimated with 23LS, using the demanded examiner approval rate as an instrument. Columns 2, 4, and 6 control for initial log exports, export tenure, and log employment. All columns include CIC2 industry by year and ownership type by year pair fixed effects. Heteroskedasticity-consistent standard errors are cultured by examiner at unit. *** p < 0.01, ** p < 0.01, * p < 0.01, *

Export Margins

Dependent variable	Annualized 3-year growth						
	# Prod (1)	# Dest (2)	# Dest-prod (3)	Avg exports per dest-prod (4)			
Successful USPTO application	0.0660	0.0531	0.0782^{*}	0.114^{**}			
	(0.0412)	(0.0344)	(0.0406)	(0.0478)			
Log exports	-0.00183	-0.0128***	-0.0104 * * *	-0.0372***			
	(0.00329)	(0.00297)	(0.00361)	(0.00407)			
Export tenure	-0.00442^{**}	-0.00541 **	-0.00626^{***}	0.00286			
	(0.00224)	(0.00212)	(0.00232)	(0.00310)			
HS2-year fixed effects	Yes	Yes	Yes	Yes			
F-stat	195.26	195.26	195.26	195.26			
# Observations	1,156	1,156	1,156	1,156			

Note: This table reports the estimated effect of a successful first U.S. patent application on the annualized 3-year growth rate of different export margins of Chinese applicants. The sample covers all CCTS-PatEx matched exporters. All columns are estimated with 25LS, using the demeaned examiner approval rate as an instrument. All columns findule HS2 sector by year pair fixed effects, and control for initial log exports and export tenure. Heteroskedasticity-consistent standard errors are clustered by examiner and unit: $*^{**} p < 0.01$, $*^{**} p < 0.1$.

Firm-destination-product Level Outcomes

Panel A. Market survival and export growth conditional on survival

Dependent variable	St	urvival indic	ator	E_{c}	Export value growth			
	(1)	(2)	(3)	(4)	(5)	(6)		
Successful USPTO application	0.0768***	0.127	0.143^{**}	0.0218	0.0836	0.233***		
	(0.0177)	(0.0809)	(0.0693)	(0.0143)	(0.0614)	(0.0821)		
F-stat		27.97	105.87		21.20	57.23		
# Observations	86,681	$86,\!681$	$86,\!681$	38,940	38,940	38,940		

Panel B. Export price and quantity growth conditional on survival

Dependent variable	E_{2}	cport price g	rowth	Export quantity growth			
	(1)	(2)	(3)	(4)	(5)	(6)	
Successful USPTO application	0.0195 (0.0144)	-0.0764 (0.0728)	-0.00433 (0.0786)	0.00875 (0.0176)	0.135** (0.0682)	0.211^{**} (0.0917)	
F-stat	(0.0144)	15.10	45.66	(0.0176)	(0.0682) 15.10	(0.0917) 45.66	
# Observations	31,320	31,320	31,320	31,320	31,320	31,320	

Controls	Firm level log exports and export tenure							
	Firm-dest-prod level log exports and relative export tenure							
Fixed effects	HS6-year and destination-year fixed effects							
Model	OLS	IV	Weighted IV	OLS	IV	Weighted IV		

Note: This table reports the estimated effect of a successful first U.S. patent application on the survival probability of incumbent firm-destination-product triplets and the growth in export value, price, and quantity of continuing firm-destination-product triplets. The sample in Columns 1-3 of Panel A (Panel B and Columns 4-6 of Panel A) covers all incumbent (all continuing) firm-destination-product triplets for CCTS-PatEx matched exporters. Columns 1 and 4 are estimated with OLS, while Columns 2, 3, 5, and 6 are estimated with 2SLS, using the demenand examiner approval rate as an instrument. Columns 3 and 6 weight observations by their initial value share in a firm's export portfolio. All columns include HSb by year and destination by year pair fixed effects, and control for firm'-level initial log exports and tenure and firm-destination-product level initial log exports and relative tenure. Heteroskedasticity-consistent standard errors are clustered by examiner art unit. *** p < 0.01, ** p < 0.5.

- ▶ We compute the semantic similarity between patent texts and HS6 products following steps similar to Argente et al. (2023)
 - 1. Compile the key textual information from each patent application record, including the patent title, abstract, and USPC technology class description
 - 2. Concatenate and preprocess both textual datasets to remove unwanted characters and stop words
 - 3. Apply the lemmatizing algorithm using the WordNetLemmatizer from the NLTK Python module, which reduces words to their base or dictionary forms
 - 4. Vectorize the preprocessed datasets using the text-embedding-ada-002 model developed by OpenAI (similar to OpenAI' s GPT-2 model)
 - 5. Compute the cosine similarities between each patent word vector
 - ▶ The similarity score threshold is set at 0.8, which is about the 99 percentile of the distribution of similarity scores

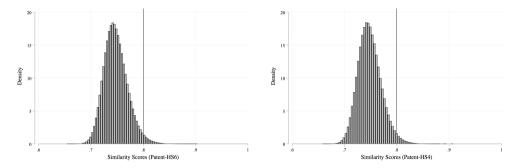


Figure: Distributions of Similarity Scores

Note: This figure plots the distributions of similarity scores between the patent texts and HS descriptions. The left panel shows the distribution of similarity scores between patent texts and descriptions of HS 6-digit codes, and the right panel shows the distribution of similarity scores between patent texts and descriptions of HS 4-digit codes.

Validation check 1

- \blacktriangleright <u>Patent title</u>: fluorescent lamp driver
- ▶ Patent abstract: the present invention discloses a kind of fluorescent lamp driver, which consists of the multi-switch converting circuit, power transformer (t1), resonant inductor (l1), resonant capacitor (c3) and step-up transformer (t2). it features the followings: the primary winding (pw) of t1 connects with the ac output of multi-switch converting circuit. l1 and c3, after series connection, connect with the secondary winding (sw) of t1 through the pw of t2. the sw of t2 connects with the load output. in this invention, a resonant inductor is connected in series on the resonant loop to realize frequency and voltage modulation as well as the soft switch function of the primary power switch of the power transformer.
- ▶ USPC Description: electric lamp and discharge devices: systems

▶ Matched HS6 codes

- 1. 850410^* Discharge lamps or tubes; ballasts therefor
- 2. 900661 Photographic flashlight apparatus; discharge lamp (electronic)
- $3.\ 850490$ Electrical transformers, static converters and inductors; parts thereof

Validation check 2

- ▶ <u>Patent title</u>: automatic tv standard determination method and apparatus thereof
- ▶ Patent abstract: an apparatus for automatically determining a tv standard of a tv channel comprises a frequency identification module and a determination module. the frequency identification module identifies a carrier frequency of an audio if signal of the tv channel to generate a frequency identification result. the determination module, which coupled to the frequency identification module, determines the tv standard of the tv channel according to the frequency identification result.
- ▶ USPC Description: television
- ► Matched HS6 codes
 - 1. 852510 Transmission apparatus; for radio-telephony, radio-telegraphy, radio-broadcasting or television, whether or not incorporating reception or sound recording and reproducing apparatus
 - 2. 852520^{*} Transmission apparatus; for radio-telephony, radio-telegraphy, radio-broadcasting or television, with reception apparatus, with or without sound recording or reproducing apparatus
 - 3. 852813 Television receivers; black and white or other monochrome, whether or not incorporating radio broadcast receivers or sound or video recording or reproducing apparatus

The ALP Weighting Algorithm

- ▶ The ALP weights are developed using the methodology from Lybbert and Zolas (2014).
 - 1. Compare keywords in 6-digit HS industry descriptions with keywords in patent abstracts.
 - 2. Tabulate the number of patents for each USPC/CPC to industry/product classification combination based on the m-to-m matches
 - 3. Re-weight the results using a modified Bayesian weighting scheme, the 'hybrid' weighting approach
 - It increases the weights of the specific matches and reduces the weights of the generalized matches
 - 4. For details, see Lybbert and Zolas (2014) and Goldschlag, Lybbert, and Zolas (2019).

Decomposition by Types: Monopoly Power

F-stat

Observations

Panel A. NLP-based semantic similarity with patent texts

	U.S.	U.S.	Non-U.S.	Non-U.S.
	Related	Unrelated	Related	Unrelated
	(1)	(2)	(3)	(4)
Successful USPTO Application	$\begin{array}{c} 0.000594 \\ (0.0171) \end{array}$	$\begin{array}{c} 0.0202\\ (0.0167) \end{array}$	$\begin{array}{c} 0.0182 \\ (0.0246) \end{array}$	0.139^{***} (0.0371)

Panel B. Lybbert and Zolas (2014) ALP similarity with patent classes

	U.S. Related (1)	U.S. Unrelated (2)	Non-U.S. Related (3)	Non-U.S. Unrelated (4)
Successful USPTO Application	$\begin{array}{c} 0.0256^{*} \\ (0.0135) \end{array}$	-0.00485 (0.0213)	$\begin{array}{c} 0.0145 \\ (0.0224) \end{array}$	0.143^{***} (0.0409)
Controls		og exports an		
HS2-year fixed effects	Yes	Yes	Yes	Yes

# Observations	1,100	1,100	1,100	1,100
Note: This table reports the estimate constituent components of the export gr posed four-way into exports to the U.S technologically related vs. unrelated to to a patent or patent technology class if the on the NLP method in Panel A (see Ap on Lybbert and Zolas (2014) approach i exporters. All columns are estimated with an instrument. All columns are include BIS	d effect of a owth of Chin . vs. Rest o he firm's pa- ir description pendix ?? for n Panel B. 7 th 2SLS, usi	successful first nese applicants. If the World (F tent. Products ns have semanti r details) and A Che sample cove ng the demean	t U.S. patent Total firm gr tOW) and pro are technologi ic similarity ab ALP weights a ers all CCTS-I ed examiner a	application on owth is decom- ducts that are cally related to ove 80% based bove 5% based PatEx matched pproval rate as
log exports and firm export tenure. Hete examiner art unit. *** $p < 0.01$, ** $p <$	roskedasticit	y-consistent sta		

195.257

1 1 5 6

195.257

1 1 5 6

195.257

1 156

195.257

1 156

Export Growth by Types: Monopoly Power

Panel A. NLP-based semantic similarity with patent texts

	U.S. Related (1)	U.S. Unrelated (2)	Non-U.S. Related (3)	Non-U.S. Unrelated (4)
Successful USPTO Application	0.0419	0.178^{*}	0.0624	0.191^{***}
	(0.138)	(0.106)	(0.0833)	(0.0730)
F-stat	74.43	133.06	125.96	182.68
# Observations	604	791	834	1,051

Panel B. Lybbert and Zolas (2014) ALP similarity with patent classes

	U.S. Related (1)	U.S. Unrelated (2)	Non-U.S. Related (3)	Non-U.S. Unrelated (4)
Successful USPTO Application	0.211	0.213^{**}	0.0746	0.181^{***}
	(0.191)	(0.0977)	(0.119)	(0.0639)
F-stat	36.05	129.75	103.40	189.08
# Observations	447	878	677	1,108

Controls	Lo	g exports a	nd export ter	nure
HS2-year fixed effects	Yes	Yes	Yes	Yes

 \overline{Mote} : This table reports the estimated effect of a successful first U.S. patent application on the subsequent export growth of Chinese applicants in each of four market types. These market types are defined based on the destination country (U.S. vs. Rest of the World, ROW) and product type (technologically related vs. unrelated to the firm's patent). Products are technologically related to a patent or patent technology class if their descriptions have semantic similarity above 80% based on the NLP method in Panel A (see Appendix ?? for details) and ALP weights above 80% based on the NLP method in Panel A (see Appendix ?? for details) and ALP weights above 80% based on the NLP method in Panel A (see Appendix ?? for details) and ALP weights above rate as an instrument. All columns are estimated with 2SLS, using the demeaned examiner approval rate as an instrument. All columns include HS2 sector by year pair fixed effects, and control for initial log exports and firm export tenure. Heteroskedasticity-consistent standard errors are clustered by examiner at multi. ** p < 0.0.1, ** p < 0.0.1, ** p < 0.0.1, **

Decomposition by Types: Quality Signal

Panel A. Rauch (1999) HS6 prod	uct differentiation			
	High income	High income	Low income	Low income
	Differentiated	Non-differentiated	Differentiated	Non-differentiated
	(1)	(2)	(3)	(4)
Successful USPTO Application	0.128***	0.0123	0.0341*	0.00395
	(0.0374)	(0.0219)	(0.0176)	(0.00571)

Panel B. Estimated quality dispersion across firms within HS6 product

	High income High quality dispersion (1)	High income Low quality dispersion (2)	Low income High quality dispersion (3)	Low income Low quality dispersion (4)
Successful USPTO Application	0.106***	0.0256	0.0307*	0.0173
	(0.0394)	(0.0325)	(0.0177)	(0.0140)
Controls		Log exports an	d export tenure	
HS2-year fixed effects	Yes	Yes	Yes	Yes
F-stat	195.26	195.26	195.26	195.26
# Observations	1,156	1,156	1,156	1,156

. Note: This table reports the estimated effect of a successful first U.S. patent application on constituent components of the export growth of Chinese applicants. Total firm growth is decomposed burveny into exports to high vs. low-income countries and products with high vs. low scope for quality differentiation. The sample covers all CCTS-PatEx matched exporters. All columns are estimated with 25LS, using the demensed examiner approval rate as an instrument. All columns include HS2 sector by year pair fixed effects, and control for initial log exports and firm export tenure. Heteroskedasticity-consistent standard errors are clustered by examiner at unit. *** p = 0.01. * p < 0.01. *

Export Growth by Types: Quality Signal

Panel A. Rauch (1999) HS6 product differentiation

	High income Differentiated (1)	High income Non-differentiated (2)	Low income Differentiated (3)	Low income Non-differentiated (4)
Successful USPTO Application	0.133**	0.115	0.0420	0.133
	(0.0649)	(0.101)	(0.0845)	(0.162)
F-stat	179.53	135.60	147.76	75.38
# Observations	1,063	760	875	431

Panel B. Estimated quality dispersion across firms within HS6 product

	High income High quality dispersion (1)	High income Low quality dispersion (2)	Low income High quality dispersion (3)	Low income Low quality dispersion (4)
Successful USPTO Application	0.158**	0.0603	0.0733	0.331**
	(0.0642)	(0.0934)	(0.0897)	(0.138)
F-stat	173.753	146.97	146.076	89.311
# Observations	1,099	689	911	447
Controls HS2-year fixed effects	Yes	Log exports an Yes	d export tenure Yes	Yes

Note: This table reports the estimated effect of a successful first U.S. patent application on the subsequent export growth of Chinese applicants in each of four market types. These market types are defined based on the destination country (high-income vs. low-income) and product type (high vs. low scope for quality differentiation). The sample covers all CUTSP-atts matched exporters. All columns are estimated with 23K3, using the demenated examiner approval rate as an instrument. All columns include HS2 sector by year pair fixed effects, and control for initial log exports and firm export tenure. Heteroskedasticity-consistent standard errors are clustered by examiner at unit. ***P = 0.01. ** p < 0.01. ** p <

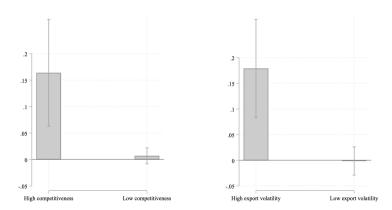
Decomposition by Types: Contractual Signal

Panel A. Nunn (2007) contract intensity

	High rule of law Contract intensive (1)	High rule of law Non-contract intensive (2)	Low rule of law Contract intensive (3)	Low rule of law Non-contract intensive (4)
Successful USPTO Application	0.115***	0.0369**	0.0150	0.0125
	(0.0418)	(0.0184)	(0.0176)	(0.00981)
Panel B. Levchenko (2007) comp	olexity			
	High rule of law High complexity (1)	High rule of law Low complexity (2)	Low rule of law High complexity (3)	Low rule of law Low complexity (4)
Successful USPTO Application	0.130***	0.0191	0.0217	0.00581
**	(0.0382)	(0.0320)	(0.0212)	(0.00770)
Controls		Log exports an	d export tenure	
HS2-year fixed effects	Yes	Yes	Yes	Yes
F-stat	195.26	195.26	195.26	195.26
# Observations	1,156	1,156	1,156	1,156

Note: This table reports the estimated effect of a successful first U.S. patent application on constituent components of the export growth of Chinese applicants. Total firm growth is decomposed four-way into exports to countries with high vs. low contact reliance. The sample covers all CCTS-PatEx matched exporters. All columns are estimated with 2SLS, using the demeand examiner approval rate as an instrument. All columns include HS2 sector by year pair fixed effects, and control for initial log exports and firm export tenuer. Heterosidenticity-consistent standard errors are clustered by examiner at unit. *** p < 0.01, ** p < 0.01, **

Export Growth by Types: Contractual Signal


	High rule of law Contract intensive (1)	High rule of law Non-contract intensive (2)	Low rule of law Contract intensive (3)	Low rule of law Non-contract intensive (4)
Successful USPTO Application	0.112* (0.0578)	0.199** (0.0977)	0.0880 (0.0991)	0.234 (0.145)
F-stat	177.79	133.13	131.87	78.63
# Observations	1,047	887	799	542
Panel B. Levchenko (2007) comp	plexity			
	High rule of law	High rule of law	Low rule of law	Low rule of law
	High complexity	Low complexity	High complexity	Low complexity

Panel A. Nunn (2007) contract intensity

	High rule of law High complexity (1)	High rule of law Low complexity (2)	Low rule of law High complexity (3)	Low rule of law Low complexity (4)
Successful USPTO Application	0.115^{*}	0.0576	0.153	0.0397
	(0.0669)	(0.0738)	(0.0992)	(0.113)
F-stat	170.25	174.76	122.36	135.54
# Observations	985	972	723	630
Controls		Log exports a	nd export tenure	
HS2-year fixed effects	Yes	Yes	Yes	Yes

Note: This table reports the estimated effect of a successful first U.S. patent application on the subsequent export growth of Chinese applicants in each of four market types. These market types are defined based on the destination country (high vs. low rule of law) and product type (high vs. low contract reliance). The sample covers all CUTS-Patkz matched exporters. All columns are estimated with 2SLS, using the demeaned examiner approval rate as an instrument. All columns include HS2 sector by year pair fixed effects, and control for initial log exports and firm export tenure. Heterosidenticity-consistent standard errors are clustered by examiner at unit. *** p < 0.01, ** p < 0.01,

Additional Evidence of the Signaling Mechanism

Additional Evidence of the Signaling Mechanism (Cont.)

Panel A.	Destination-product	market	HH
----------	---------------------	--------	----

$Dependent\ variable$	Survival Indicator (1)	Export value growth (2)
Successful USPTO application \times HHI	-0.401^{***} (0.110)	0.0407 (0.107)
F-stat	33.83	21.87
# Observations	86,627	38,822

Panel B. Export volatility in the destination-product market

$Dependent \ variable$	Survival Indicator (1)	Export value growth (2)	
Successful USPTO application \times Export volatility	0.271** (0.107)	-0.176 (0.126)	
F-stat	32.99	20.74	
# Observations	86,091	38,797	
Controls	Firm-dest-prod level log exports, relative export tenure, and HHI/export volatility		
Fixed effects	Firm-year, HS6-year, and destination-year fixed effects		

Note: This table reports the heterogeneous effect of a successful first U.S. patent application on the survival probability and export growth across destination-product markets within firms. The sample in Columns 1 (Columns 2) covers all incumbert (all continuing) firm-destination-product trajelates for CCTS-PatEx matched exporters. Destination-product trajects have high information asymmetry if their competitiveness is above the median in Panel A and if their alse volatility is above the median in Panel B. Market computitiveness is the Herfindhal Index (HHI) across Chinese exporters in a given destination-product scattering the exposite of variation of exports within a firm-destination-product very intervent effects and a scattering the exposite of variation of exports within a firm-destination-product very across firms to the destination-product level. All columns are estimated with 2SLS, using the demeaned examiner approval rate as an instrument. All columns include HS6 by year, destination by year, and firm by year pair fixed effects, and control for firm-destination-product level initial log exports and relative tenure. Heteroskedasticity-consistent standard errors are clustered by examiner atrunit. *** p < 0.01, ** p < 0.05, * p < 0.1.

Heterogeneous Effects by Export Tenure

Dependent variable	Annualized 3-year export growth			
	(1)	(2)	(3)	
Successful USPTO application	0.175***	0.236***	0.0996	
	(0.0522)	(0.0788)	(0.0790)	
Log exports	-0.0367***	-0.0412***	-0.0274***	
	(0.00492)	(0.00606)	(0.00915)	
Export tenure	-0.00299	-0.0103	-0.00371	
	(0.00366)	(0.00981)	(0.00764)	
HS2-year fixed effects	Yes	Yes	Yes	
Sample	All applicants	Tenure ≤ 5	Tenure > 5	
F-stat	187.19	81.17	65.46	
# Observations	1,156	646	427	

Note: This table reports the heterogeneous effect of a successful first U.S. patent application on the subsequent annalized 3-year export growth of Chinese applications with different export tenure. The sample in Columns 1 covers all CCTS-PatEx matched exporters. The sample in Column 2 (3) covers CCTS-PatEx matched exporters with export tenure below (above) the median (5 years). All columns are estimated with 281S, using the demeaned examiner approval rate as an instrument. All columns include 182 sector by year pair fixed effects, and control for initial log exports and export tenure. Heteroskelasticity-consistent standard errors are elustered by examiner art unit: $w^+ p < 0.01$, $w^+ p < 0.01$.

Testing the Financial Constraint Mechanism

Dependent variable	Annualized 3-year export growth					
	External Finnancial Dependence		Liquidity Needs		Asset Tangibility	
Firm Fin Vulnerability	High (1)	$_{(2)}^{Low}$	High (3)	Low (4)	High (5)	Low (6)
Successful USPTO application	0.149** (0.0682)	0.183*** (0.0615)	0.154^{**} (0.0619)	0.226*** (0.0766)	0.138** (0.0659)	0.263*** (0.0813)
Difference (High - Low)		-0.0368 (0.0894)		799 1971)		130 9999)
Controls	Log exports, export tenure					
HS2-year fixed effects	Yes	Yes	Yes	Yes	Yes	Yes
K-P rk Wald F-stats	147.46	135.58	180.43	101.28	138.46	102.99
Observations	473	644	646	470	591	511

Note: This table reports the heterogeneous effect of a successful first U.S. patent application on the subsequent annualized 3-year export growth of Chinese applicants with different levels of financial vulnerability. The sample in Columns 1, 3, and 5 (2, 4, and 6) covers CCTS-PatEx matched exporters with financial vulnerability above (below) the median. A firm's financial vulnerability is measured with the weighted average of industry-level financial vulnerability, using industries' share of firm exports as weights. Industry's financial vulnerability is measured by their external finance dependence, liquidity needs (invention-to-sales ratio), or asset tangibility. All columns are estimated with 2SLS, using the demendence maproval rate as an instrument. All columns include HS2 sector by year pair fixed effects, and control for initial log exports and export tenure. Heteroskedasticity-consistent standard errors are culsered by examiner at unit. *** p < 0.01, ** p < 0.05, * p < 0.1.

Patent Filing in China

Dependent variable	Annualized 3-year growth of CNIPA patents				
	(1)	(2)	(3)		
Successful UPSTO application	0.0659	-0.0583	-0.0494		
	(0.0461)	(0.120)	(0.0993)		
Log exports	0.0119^{*}	0.0123^{*}	0.00184		
	(0.00624)	(0.00644)	(0.00640)		
Export tenure	-0.00871	-0.00874	-0.00460		
	(0.00654)	(0.00664)	(0.00637)		
HS2-year fixed effects	Yes	Yes	Yes		
Model	OLS	2SLS	2SLS		
Sample	All applicants	All applicants	Continuing applicants		
F-stat		146.65	147.78		
Observations	797	797	724		

Note: This table reports the estimated effect of a successful first U.S. patent application on a Chinese applicant's subsequent patent applications in China. The sample covers CCTS-ORBIS-PatEx matched exporters. Column 1 is estimated with OLS, while Columns 2 and 3 are estimated with 2SLS, using the demeaned examiner approval rate as an instrument. All columns include HS2 by application year pair fixed effects, and control for initial log exports and export tenure. Heteroskedasticity-consistent standard errors are clustered by examiner art unit. *** p < 0.01, ** p < 0.05, * p < 0.1.