Aggregate Effects of SEZs: A Firm Dynamics Model with Endogenous Entry, Exit and Location Choices

Boyao Zhang

IDEA-UAB and Barcelona SE

The 17th China Economics Summer Institute

August 20, 2024

(日) (문) (문) (문) (문) (민) (이 (이 (미) (대)))
1/33

What is a Special Economic Zone (SEZ)?

- A location where firms are subject to these benefits and dues:
 - 1. Corporate taxes are lower: 20% SEZ < 33% NSEZ.
 - 2. Credit access is larger: SEZ firms are more likely to get credit.
 - 3. Keep a minimum scale (profit) requirement.

<□▷ <圕▷ < ె▷ < ె▷ < 王▷ 된 = 의익() 3/33

1. How much do SEZs affect aggregate productivity?

1. How much do SEZs affect aggregate productivity? Through:

1. How much do SEZs affect aggregate productivity? Through:

 \triangleright Selection in entry, exit and location (zone) choice.

1. How much do SEZs affect aggregate productivity? Through:

 \triangleright Selection in entry, exit and location (zone) choice.

 \triangleright Resource allocation of factor inputs

1. How much do SEZs affect aggregate productivity? Through:

- \triangleright Selection in entry, exit and location (zone) choice.
- ▷ Resource allocation of factor inputs
- > Aggregate investment

1. How much do SEZs affect aggregate productivity? Through:

- ▷ Selection in entry, exit and location (zone) choice.
- ▷ Resource allocation of factor inputs
- > Aggregate investment
- > Agglomeration/spillover effects

1. How much do SEZs affect aggregate productivity? Through:

- ▷ Selection in entry, exit and location (zone) choice.
- ▷ Resource allocation of factor inputs
- > Aggregate investment
- ▷ Agglomeration/spillover effects

2. What is the optimal size of SEZs?

(1) New firm-level panel data set:

(1) New firm-level panel data set:

- Annual Survey of Industrial Firms (ASIF) & SEZs List
- Firm's dynamic SEZ status.
- New stylized facts for firm dynamics and SEZs.

(1) New firm-level panel data set:

- Annual Survey of Industrial Firms (ASIF) & SEZs List
- Firm's dynamic SEZ status.
- New stylized facts for firm dynamics and SEZs.

(2) Firm dynamics model with endogeneous entry, exit and location (zone) choices:

(1) New firm-level panel data set:

- Annual Survey of Industrial Firms (ASIF) & SEZs List
- Firm's dynamic SEZ status.
- New stylized facts for firm dynamics and SEZs.

(2) Firm dynamics model with endogeneous entry, exit and location (zone) choices:

- Aggregate effects of SEZs
- SEZ channels one-by-one
- Optimal size of SEZs (optimal corporate taxes).

1. SEZs are empirically associated with

(1) higher productivity z_i (selection +)

1. SEZs are empirically associated with

- (1) higher productivity z_i (selection +)
- (2) higher capital k_i

1. SEZs are empirically associated with

- (1) higher productivity z_i (selection +)
- (2) higher capital k_i
- (3) better within-firm allocations $cov_i(z, k)$
- 2. Through model counterfactuals:
 - \triangleright SEZs increase aggregate TFP by 25.7%.
 - (1) Selection (average z_i increases by 25.1%),
 - (2) Accumulation (average k_i increases by 12.8%)
 - (3) Within-firm resource allocation (average $cov_i(z, k)$ by 88%)

1. SEZs are empirically associated with

- (1) higher productivity z_i (selection +)
- (2) higher capital k_i
- (3) better within-firm allocations $cov_i(z, k)$
- 2. Through model counterfactuals:
 - \triangleright SEZs increase aggregate TFP by 25.7%.
 - (1) Selection (average z_i increases by 25.1%),
 - (2) Accumulation (average k_i increases by 12.8%)
 - (3) Within-firm resource allocation (average $cov_i(z, k)$ by 88%)
 - \triangleright About 1/2 of the improved selection, resource allocation and investment is driven by the reduction of financial frictions.

Literature

- Empirical evidence of SEZs on TFP growth, investment (city-level): Wang (2013); Alder et al. (2016); Schminke and Biesebroeck (2011)
 - micro variation within cities, and within SEZs.
- Agglomeration/Selection effect: Marshall (1890); Jacobs (1969); Combes et al. (2012)
 - selection plays the main role in China.
- Firm dynamics, entry barriers, selection: Hopenhayn (1992); Khan and Thomas (2011); Lagakos and Waugh (2013); Restuccia and Rogerson (2008)
 - endogenous entry and discrete SEZ location choices.
- Resource misallocation, selection models: Restuccia and Rogerson (2008); Hsieh and Klenow (2009); Adamopoulos et al. (2023)
 - dynamics (investment) and agglomeration effects.

New Panel Data and Stylized Facts

New Firm-Level Panel Data

Construction

(1) Main dataset: ASIF collected by (NBS) over 1998-2013.

- 1.1 Firms annual sales > 5 million RMB
- **1.2** Unify county-level code at firm-level data using "street name", "community name" to unify the county code as the administrative division code of 2013.

New Firm-Level Panel Data

Construction

- (2) China Development Zone Review Announcement List (2018) + official sources
 - **2.1** Information: zone's name, zone size, **approval time**, dominant industries.
 - **2.2** Lack of location: GIS map, find the address of SEZs based on its name. Coded with county ID.

My constructed dataset contains 586,599 unique firms over 1998-2013 in 2,574 counties.

SEZs in China: Evolution Across Time and Space

Deng Xiaoping: "Crossing the river by touching the stones"

SEZs in China: Evolution Across Time and Space

Deng Xiaoping: "Crossing the river by touching the stones"

Stylized Fact 1: Better performance in SEZ

SF1: Average firm TFP in SEZ is 136% larger than in NSEZ.

Stylized Fact 1: Better performance in SEZ

SF1: Average firm TFP in SEZ is 136% larger than in NSEZ.

Indicator	SEZ	Non-SEZ
Avg Productivity (z_i)	2.21	1.03
Avg Capital (k_i)	9.36	8.70
$cov(z_i,k_i)$	002	03

Indicator	SEZ	Non-SEZ
Avg Productivity (z_i)	2.21	1.03
Avg Capital (k_i)	9.36	8.70
$cov(z_i,k_i)$	002	03

▶ Average firm TFP in SEZ is 118% larger than in NSEZ.

Indicator	SEZ	Non-SEZ
Avg Productivity (z_i)	2.21	1.03
Avg Capital (k_i)	9.36	8.70
$cov(z_i,k_i)$	002	03

Average firm TFP in SEZ is 118% larger than in NSEZ.
Firms born in SEZ capital increase by 66%;

Indicator	SEZ	Non-SEZ
Avg Productivity (z_i)	2.21	1.03
Avg Capital (k_i)	9.36	8.70
$cov(z_i,k_i)$	002	03

- ▶ Average firm TFP in SEZ is 118% larger than in NSEZ.
- Firms born in SEZ capital increase by 66%;
- Average $cov(z_i, k_i)$ in SEZ 2.8% larger than in NSEZ.

	Before Move		After Move		Difference			Selection
	SEZ	NSEZ	SEZ	NSEZ	Before Move	After Move	Effect of SEZ	
Avg. Productivity (z_i)	0.84	0.64	1.73	0.95	0.2	0.78	0.58	0.26
Avg. Capital (k_i)	9.02	8.73	9.73	9.16	0.29	0.57	0.28	0.51
$cov(z_i,k_i)$	-0.04	-0.02	0.07	-0.01	-0.02	0.09	0.10	0.18

SEZ Firms (potential) before move:

- Better performance in TFP (Avg. Z_i 20% higher)

	Before Move		After Move		Difference			Selection
	SEZ	NSEZ	SEZ	NSEZ	Before Move	After Move	Effect of SEZ	
Avg. Productivity (z_i)	0.84	0.64	1.73	0.95	0.2	0.78	0.58	0.26
Avg. Capital (k_i)	9.02	8.73	9.73	9.16	0.29	0.57	0.28	0.51
$cov(z_i,k_i)$	-0.04	-0.02	0.07	-0.01	-0.02	0.09	0.10	0.18

SEZ Firms (potential) before move:

- Better performance in TFP (Avg. Z_i 20% higher)

SEZ Firms after move to SEZ

- Avg. TFP gap widened, SEZs firms TFP is 78% larger than in NSEZ

	Before Move		After Move		Difference			Selection
	SEZ	NSEZ	SEZ	NSEZ	Before Move	After Move	Effect of SEZ	
Avg. Productivity (z_i)	0.84	0.64	1.73	0.95	0.2	0.78	0.58	0.26
Avg. Capital (k_i)	9.02	8.73	9.73	9.16	0.29	0.57	0.28	0.51
$cov(z_i,k_i)$	-0.04	-0.02	0.07	-0.01	-0.02	0.09	0.10	0.18

SEZ Firms (potential) before move:

- Better performance in TFP (Avg. Z_i 20% higher)
- Better performance in capital (Avg. k_i 29% higher)
| | Before Move Af | | After | ^r Move | Difference | | | Selection |
|---------------------------|----------------|-------|-------|-------------------|-------------|------------|---------------|-----------|
| | SEZ | NSEZ | SEZ | NSEZ | Before Move | After Move | Effect of SEZ | |
| Avg. Productivity (z_i) | 0.84 | 0.64 | 1.73 | 0.95 | 0.2 | 0.78 | 0.58 | 0.26 |
| Avg. Capital (k_i) | 9.02 | 8.73 | 9.73 | 9.16 | 0.29 | 0.57 | 0.28 | 0.51 |
| $cov(z_i,k_i)$ | -0.04 | -0.02 | 0.07 | -0.01 | -0.02 | 0.09 | 0.10 | 0.18 |

SEZ Firms (potential) before move:

- Better performance in TFP (Avg. Z_i 20% higher)
- Better performance in capital (Avg. k_i 29% higher)

SEZ Firms after move to SEZ

- Avg. TFP gap widened, SEZs firms TFP is 78% larger than in NSEZ.
- Avg. capital gap widened, SEZs firms capital is 57% larger than in NSEZ.

	Before Move		After Move		Difference			Selection
	SEZ	NSEZ	SEZ	NSEZ	Before Move	After Move	Effect of SEZ	
Avg. Productivity (zi)	0.84	0.64	1.73	0.95	0.2	0.78	0.58	0.26
Avg. Capital (k_i)	9.02	8.73	9.73	9.16	0.29	0.57	0.28	0.51
$cov(z_i, k_i)$	-0.04	-0.02	0.07	-0.01	-0.02	0.09	0.10	0.18

SEZ Firms (potential) before move:

- Better performance in TFP (Avg. Z_i 20% higher).
- Better performance in capital (Avg. k_i 29% higher).
- Worse performance in $cov(k_i, z_i)$ ($cov(k_i, z_i)$ 2% lower).

	Before Move		After Move		Difference			Selection
	SEZ	NSEZ	SEZ	NSEZ	Before Move	After Move	Effect of SEZ	
Avg. Productivity (zi)	0.84	0.64	1.73	0.95	0.2	0.78	0.58	0.26
Avg. Capital (k_i)	9.02	8.73	9.73	9.16	0.29	0.57	0.28	0.51
$cov(z_i, k_i)$	-0.04	-0.02	0.07	-0.01	-0.02	0.09	0.10	0.18

SEZ Firms (potential) before move:

- Better performance in TFP (Avg. Z_i 20% higher).
- Better performance in capital (Avg. *k*_i 29% higher).
- Worse performance in $cov(k_i, z_i)$ ($cov(k_i, z_i)$ 2% lower).

SEZ Firms after move to SEZ

- Avg. TFP gap widened, SEZs firms TFP is 78% larger than in NSEZ.
- Avg. capital gap widened, SEZs firms capital is 57% larger than in NSEZ.
- $cov(k_i, z_i)$ flips the signs, SEZs firms is 9% larger.

	Before Move		After Move		Difference			Selection
	SEZ	NSEZ	SEZ	NSEZ	Before Move	After Move	Effect of SEZ	
Avg. Productivity (z _i)	0.84	0.64	1.73	0.95	0.2	0.78	0.58	0.26
Avg. Capital (k_i)	9.02	8.73	9.73	9.16	0.29	0.57	0.28	0.51
$cov(z_i, k_i)$	-0.04	-0.02	0.07	-0.01	-0.02	0.09	0.10	0.18

SEZ Firms (potential) before move:

- Better performance in TFP (Avg. Z_i 20% higher).
- Better performance in capital (Avg. k_i 29% higher).
- Worse performance in $cov(k_i, z_i)$ ($cov(k_i, z_i)$ 2% lower).

SEZ Firms after move to SEZ

- Avg. TFP gap widened, SEZs firms TFP is 78% larger than in NSEZ.
- Avg. capital gap widened, SEZs firms capital is 57% larger than in NSEZ.
- $cov(k_i, z_i)$ flips the signs, SEZs firms is 9% larger.

Movers have better performance in terms of TFP, capital, resource allocation

Taking stock

- There are significant differences in the performance of firms in SEZ versus NSEZ in terms of (z_i, k_i) and cov(z_i, k_i)
- Cannot take those differences as caused by SEZ, because entering in SEZ (through birth or by moving) is endogenous.

Further, I am after:

- 1 Aggregate effects of SEZ
- 2 Optimal size of SEZ.

Firm Dynamics Model: Entry, Exit and Location (SEZ) Choice

A Firm Dynamics Model with Entry/Exit/Location

Highlight specific aspects of SEZs (τ, θ, \bar{X}) :

- Corporate tax $\tau^{s} < \tau^{ns}$
- Financial frictions: borrowing constraint with tightness $\theta^s > \theta^{ns}$
- Minimum profit scale: \bar{X}

Economic Environment

- Time is discrete in infinite horizon.
- Two locations in the economy, $l \in \{S, NS\}$ refers to SEZ and NSEZ.
- Heterogeneous firms producing a homogeneous good.
- There is a distribution $\mu_i \equiv \mu(z_i)$ for firm type i.
- Tax revenues are assumed to be rebated lump-sum to consumers.

Firms

- 1. A continuum of firms;
- 2. Each firm owns its predetermined capital stock, k and hires labor, l;
- 3. The production technology is:

$$y_{it} = z_{it} (k_{it}^{\alpha} l_{it}^{1-\alpha})^{\gamma}$$

where 0 < lpha < 1, 0 < γ < 1

4. Assume that firm productivity z_{it} follows AR(1) process

$$z_{it} = \rho z_{it-1} + \sigma_{\epsilon} \epsilon_{it}$$

- 5. All debt is priced at q, and firm face a borrowing limit on this one-period discount debt.
- 6. The borrowing constraint restricts the amount of new debt level, b' not to exceed a firm's collateral, k'.
- 7. A firm choosing k' in current period, the collateral constraint is $b' \leq \theta^r k'$, $r \in \{s, ns\}$, $\theta^s > \theta^{ns}$

Timing within a Period

16/33

Incumbent firms problem: Location choice

1. Firms profits are:

$$\pi^{r}(k, b, z) = (1 - \tau^{r})[z(k^{lpha}l^{1 - lpha})^{\gamma} - wl + k(1 - \delta) - k'] + qb' - b$$

where $r \in \{s, ns\}$.

2. Value of a firm indexed by productivity z, capital k and bonds z is

$$V_i^r(k, b, z) = \max_{r \in \{s, ns\}} \{V_i^s(k, b, z), V_i^{ns}(k, b, z)\}$$

$$V_{i}^{r}(k, b, z) = \max_{l, b', k'} \pi^{r}(k, b, z) + \beta \mathbb{E}_{z'} \max \left\{ V_{i}^{X}(k', b'), V_{i}^{r}(k', b', z') - \xi^{r} \right\}$$

s.t.

$$b' \leq \theta^{j} k'$$

$$\bar{x}' \leq D \equiv (1 - \tau') \left[z(k^{\alpha} l^{1 - \alpha})^{\gamma} - wl + k(1 - \delta) - k' \right] + qb' - b$$

where $heta^{s} > heta^{ns}$, $ar{x}^{ns} = 0$, $ar{x}^{ns} > 0$

$$V_x(k',b')=k'(1-\delta)-b'$$

New firms problem: Entry (Birth) and Location Choice

Potential entrants (birth) solve:

$$V_e(k, b, z) = \max\left\{\underbrace{0}_{\text{No Birth}}, \underbrace{\mathbb{E}_{z'}[V^{ns}(k, b, z)] - c_e^{ns}}_{\text{Birth in NSEZ}}, \underbrace{\mathbb{E}_{z'}[V^s(k, b, z)] - c_e^s}_{\text{Birth in SEZ}}\right\}$$

That is, firms will invest and start operating iff

$$\mathbb{E}_{z'}[V_e^r(k,b,z)] \geq c_e^r, ext{ where } r \in \{s,ns\}$$

Moreover, choosing to enter firms also choose in which location: if

$$V_e^s(k,b,z) - c_e^s \geq V_e^{ns}(k,b,z) - c_e^{ns},$$

then firms choose to enter SEZ (and NSEZ otherwise).

Workers

- A unit measure of identical households in the economy.
- Household earn labor income by supplying labor N, and holds a non-contingent discount bonds φ.
- Workers value:

$$V^{h}(\phi) = \max_{C^{h}, N^{h}, \phi'} U(C^{h}, 1 - N^{h}) + \beta V^{h}(\phi')$$

s.t.

$$C^h + q\phi' \le wN^h + \phi + T$$

where

$$T = \int_{\{(k,b,z)|j(k,b,z)=s,ns\}} \tau^{j}(y - wl - k' + (1 - \delta)k)d\mu^{p}(k,b,z)$$

<ロ><回><個><目><目><目><目><目><のQの 19/33

Recursive Equilibrium

A stationary competitive equilibrium is composed of an invariant distribution of capital, bonds and productivity $\mu(k, b, z)$; firms' policy functions l(k, b, z), k(k, b, z), b(k, b, z), j(k, b, z); households' policy functions (C^h, N^h, Φ^h) ; and prices (w, q), such that:

- (1) V^{se} , V^{ns} solve firms' problem, and (l, k, b, j) are the associated policy functions for firms.
- (2) V^h solve hh problem, and (C^h, N^h, Φ^h) are the associated policy functions for hh.
- (3) The labor market clears

$$N^{h} = \int_{\{(k,b,z)|j(k,b,z)=s,ns\}} I(k,b,z) d\mu^{p}(k,b,z)$$

Recursive Equilibrium (continued)

(4) Asset market clears

$$\phi^{h} = \int_{\{(k,b,z)|j(k,b,z)=s,ns\}} b(k,b,z) d\mu^{p}(k,b,z) - \int_{\{(k,b,z)|j(k,b,z)=s,ns\}} b(k,b,z) d\mu^{ex}(k,b,z)$$

(5) The goods market clears.

$$\begin{split} C^{h} &= \int_{\{(k,b,z)|j(k,b,z)=s,ns\}} \left[z(l^{\alpha}k^{1-\alpha})^{\gamma} - (k'-(1-\delta)k) - \xi^{j} \right] d\mu^{p}(k,b,z) \\ &+ \int_{\{(k_{0},b_{0},z_{0})|j(k_{0},b_{0},z_{0})=s,ns\}} (k_{0}-c_{e}^{j}) d\mu^{e}(k_{0},b_{0},z_{0}) \\ &- \int_{\{(k,b,z)|j(k,b,z)=s,ns\}} (1-\delta)k d\mu^{ex}(k,b,z) \end{split}$$

(6) Resource Constraint

$$T = \int_{\{(k,b,z)|j(k,b,z)=s,ns\}} \tau^{j}(y - wl - k' + (1 - \delta)k)d\mu^{p}(k,b,z)$$

Recursive Equilibrium (continued)

(7) Distribution follow the law of motion:

$$\begin{split} \mu(k',b',z') &= \int_{\{(k,b,z)|j(k,b,z)=s,ns\}} d\mu^p(k,b,z) \\ &+ \int_{\{(k_0,b_0,z_0)|j(k_0,b_0,z_0)=s,ns\}} d\mu^e(k_0,b_0,z_0) \\ &- \int_{\{(k,b,z)|j(k,b,z)=s,ns\}} d\mu^{ex}(k,b,z) \end{split}$$

Solving the model

- EGM + Upper Envelope theory
- \blacktriangleright k and b do not separately determine the choices of k' and b'.
- Collapse two state variables into new variable cash-on-hand, m(k, b, z).

$$m(k,b,z)\equiv (1- au)\left[z(k^{lpha}\hat{L}^{(1-lpha)})^{\gamma}-w\hat{L}+(1-\delta)k
ight]-b^{lpha}$$

$$\blacktriangleright m' \equiv m(k', b', z')$$

Rewrite the incumbent firm's problem in SEZ

$$V^{s}(m,z) = \max_{k',b',D,m'_{j}} \left[D + \max\left\{ V_{x}(m), \beta \int_{z'} V(m',z') dG(z'|z) \right\} \right]$$

s.t. $\bar{X} \leq D \equiv m - k'(1 - \tau^{s}) + qb'$
 $b' \leq \theta^{s}k'$
 $m' \equiv m(k',b',z')$
 $= (1 - \tau^{s}) \left[z'(k'^{\alpha} \hat{L}^{(1-\alpha)}(k',z'))^{\gamma} - w \hat{L}(k',z') + (1 - \delta)k' \right] - b'$

▶ Unconstraint I,k ▶ Unconstraint b ▶ Algorithm m̄

Firm heterogeneity and Decisions

Decision Rules k', b' for firm in SEZs by productivity

• Uncont.firm $(m > \overline{m})$: Unct. k, b; $\pi > 0$

Const. firm

1. $\tilde{m} < m < \bar{m}$: zero-profit, accumulate internal financial savings

- **2.** $m < \tilde{m}$: b > 0 up to collateral value k
- 3. Firms with low *m* and *z* not survive if positively leveraged.

Location choice by wealth and productivity

Cash-on-hand (m)

- Location choice depends on the z_i (y-axis) and m_i (x-axis):
 - **1.** Firms with high z_i and high m_i enter SEZ.
 - 2. Firms with middle *m_i* become NSEZ's firms.
 - 3. Relaxing borrowing const: low m but high z become SEZ.

➡ Relaxing Borrowing Constraints

Productivity process and Calibration

Generate productivity process. <u>process</u>

- Calibrate parameters both externally and internally (SMM)
- All parameters capture SEZ features are calibrated internally, except τ
- 8 target moments with key moments:
 - SEZ firms' average productivity > NSEZ (empirical evidence).
 - For firms born in SEZ, avg productivity > born in NSEZ.

→ moments

Firm Dynamics (Lifecycle) by Zone

► Avg k (upper-left panel): SEZ firms accumulating capital and become larger than those in NSES.

Firm Dynamics (Lifecycle) by Zone

► Avg b (upper-right panel): SEZ firms more leveraged than those in NSES.

Firm Dynamics (Lifecycle) by Zone

- Avg z (lower-right panel): Age 0, higher z in SEZ.
- Avg z increase in SEZ up to age 4 due to substantial capital accumulation.

Quantitative Experiments

Quant. Experiment: No SEZs Counterfactual Change SEZ (τ, θ, \bar{X}) to NSEZ

				No-SEZ	Effects
	В	Benchma	rk	Scenario	of SEZs
	NSEZs	SEZs	Overall	Overall	(%)
Aggregate TFP (Z)	.3563	.5271	.5305	.4221	25.70
TFP Distribution:					
Firm-Level TFP (Avg.)	.5262	.6252	.5284	.4221	25.10
Birth Rate	.9736	.8577	.9717	1.00	-2.83
Firm-Level TFP at Birth (Avg.)	.0712	.6397	.4849	.4314	12.40
Death Rate	.0147	.2827	.2974	.2028	46.64
Financial Constraint:					
$cov(z_i, k_i)$ (Avg.)	0214	.0346	.0281	0249	88.00
Bond-capital ratio (b_i/k_i) (Avg.)	1.0455	.7343	.7456	.5500	35.56
Financial const. firm (%)	.0019	.9997	.0366	.8210	-95.55
Corporate Taxation:					
Effective $ au$.0049	.0562	0.18	.0001	1800.31

SEZs improve aggregate TFP by 25.7%:

- Better selection: SEZ $\overline{z_i}$ is 25.1% > NSEZ.
- Less frictioned: Firm TFP more correlated to capital.

After the mechanism: Financial Frictions

No SEZ Counterfactual + (θ^s)

				No-SEZ	Effects
	В	enchma	rk	Scenario	of SEZs
	NSEZs	SEZs	Overall	Overall	(%)
Aggregate TFP (Z)	.3563	.5271	.5305	.4945	7.29
TFP Distribution:					
Firm-Level TFP (Avg.)	.5262	.6252	.5284	.4589	15.14
Birth Rate	.9736	.8577	.9717	.7195	35.06
Firm-Level TFP at Birth (Avg.)	.0712	.6397	.4849	.4314	12.40
Death Rate	.0147	.2827	.2974	.3271	-9.09
Financial Constraint:					
$cov(z_i, k_i)$ (Avg.)	0214	.0346	.0281	0223	79.36
Bond-capital ratio (b_i/k_i) (Avg.)	1.0455	.7343	.7456	.6616	12.69
Financial const. firm (%)	.0019	.9997	.0366	.5156	-92.91
Corporate Taxation:					
Effective $ au$.0049	.0562	.18	.1500	18.75

Less financial frictions in SEZs increase aggregate TFP, 7.29%:

- Better selection: $\overline{z_i}$ in the economy goes up by 15.14%
- Better allocation: Firm TFP more correlated to capital.

After the mechanism: Corporate Taxes

No SEZ Counterfactual + (τ^s, θ^s)

				No-SEZ	Effects
	E	Benchmar	'k	Scenario	of SEZs
	NSEZs	SEZs	Overall	Overall	(%)
Aggregate TFP (Z)	.3563	.5271	.5305	.3212	65.15
TFP Distribution:					
Firm-Level TFP (Avg.)	.5262	.6252	.5284	.8389	-37.01
Birth Rate	.9736	.8577	.9717	0.5717	69.66
Firm-Level TFP at Birth (Avg.)	.0712	.6397	.4849	0.0004	108698.04
Death Rate	.0147	.2827	.2974	0.0002	296
Financial Constraint:					
$cov(z_i, k_i)$ (Avg.)	0214	.0346	.0281	0205	72.95
Bond-capital ratio (b_i/k_i) (Avg.)	1.0455	0.7343	.7456	.6616	24.06
Financial const. firm (%)	.0019	.9997	.0366	.5740	-93.63
Corporate Taxation:					
Effective $ au$	0.0049	.0562	0.18	.33	-41.01

Less taxes in SEZs increase aggregate TFP, 65.15%:

- Worse selection: $\overline{z_i}$ in the economy goes down by 37.01%
- Better allocation: Firm TFP more correlated to capital.

Summarizing the effects of the SEZs

Aggregate TFP (Z)	benchmark	counterfactual	Difference (%)
Collateral constraint θ	100 (0.5305)	93.2058 (0.4945)	7.29%
+ Corporate income tax $ au$	100 (0.5305)	60.54 (0.3212)	65.15%
$+$ Minimal profit scale $ar{X}$	100 (0.5305)	79.57 (0.4221)	25.7%
Average TFP (z_i)	benchmark	counterfactual	Difference (%)
Collateral constraint θ	100 (0.5284)	93.2058 (0.4589)	15.14%
+ Corporate income tax $ au$	100 (0.5284)	158.13 (0.8389)	-37.01%
$+$ Minimal profit scale $ar{X}$	100 (0.5284)	79.57 (0.4221)	25.1%
$cov(z_i,k_i)$	benchmark	counterfactual	Difference (%)
Collateral constraint θ	100 (0.0281)	-79.36 (0223)	79.36%
+ Corporate income tax $ au$	100 (0.0281)	-72.95 (0205)	72.95%
$+$ Minimal profit scale $ar{X}$	100 (0.0281)	-88 (0249)	88%

Reduced financial frictions:

- Better selection and more efficient resource allocation.

+ Reduced tax:

- Worse selection and less efficient resource allocation (compared to only reduced financial friction).

SEZ increases aggregate TFP by 25.7%.

► SEZ increases aggregate TFP by 25.7%.

The improvements are due to:

- ► SEZ increases aggregate TFP by 25.7%.
- ► The improvements are due to:
 - ▶ Better selection: average firm TFP increases by 25.1%

- ► SEZ increases aggregate TFP by 25.7%.
- The improvements are due to:
 - Better selection: average firm TFP increases by 25.1%
 - Better resource allocation: $cov(z_i, k_i)$ increases by 88%.

- ► SEZ increases aggregate TFP by 25.7%.
- The improvements are due to:
 - Better selection: average firm TFP increases by 25.1%
 - Better resource allocation: $cov(z_i, k_i)$ increases by 88%.
 - ▶ Higher investment: aggregate capital increases by 12.8%.

► SEZ increases aggregate TFP by 25.7%.

The improvements are due to:

Better selection: average firm TFP increases by 25.1%

- Better resource allocation: $cov(z_i, k_i)$ increases by 88%.
- ▶ Higher investment: aggregate capital increases by 12.8%.

Isolating the role of financial frictions:

- ► SEZ increases aggregate TFP by 25.7%.
- The improvements are due to:
 - Better selection: average firm TFP increases by 25.1%
 - Better resource allocation: $cov(z_i, k_i)$ increases by 88%.
 - ▶ Higher investment: aggregate capital increases by 12.8%.
- Isolating the role of financial frictions:
 - Around half of the increase in aggregate TFP due to reduction of financial frictions.

- ► SEZ increases aggregate TFP by 25.7%.
- The improvements are due to:
 - ▶ Better selection: average firm TFP increases by 25.1%
 - Better resource allocation: $cov(z_i, k_i)$ increases by 88%.
 - ▶ Higher investment: aggregate capital increases by 12.8%.
- Isolating the role of financial frictions:
 - Around half of the increase in aggregate TFP due to reduction of financial frictions.
 - Better selection: average TFP increases by 15.14%.

- ► SEZ increases aggregate TFP by 25.7%.
- The improvements are due to:
 - ▶ Better selection: average firm TFP increases by 25.1%
 - Better resource allocation: $cov(z_i, k_i)$ increases by 88%.
 - ► Higher investment: aggregate capital increases by 12.8%.
- Isolating the role of financial frictions:
 - Around half of the increase in aggregate TFP due to reduction of financial frictions.
 - Better selection: average TFP increases by 15.14%.
 - Better resource allocation: cov(z_i, k_i) increases by 79.36%.

Thank you!

<ロ> < 部> < 語> < 語> < 語) < 語) 2 (0) 33/33

Appendix

Stylized Fact 1: Better performance in SEZ

Table: Firm-Level Productivity and Capital Across Zones

Indicator	SEZ	Non-SEZ
Avg Productivity (z_i)	2.21	.85
Avg Capital (k_i)	9.48	8.82
$cov(z_i, k_i)$	00005	0239

→ Back to SF1 main

Special Economic Zones (SEZs) in China: Evolution

Special Economic Zones (SEZs) in China: Evolution

Special Economic Zones (SEZs) in China: Evolution

Data (cont's)

Measurement

- Productivity measurement: TFP is estimated by using Olley&Parks1996:
 * Key Variables
 * OP
 * TEPResults
- Definition of firms in SEZ: address contains relevance words to SEZs + postal codes + common street/community name
 - **1.1** Pre-exisiting firm in the SEZ location.
 - **1.2** Movers into SEZ: firms's address switched from NSEZ to SEZ.
 - **1.3** New firms in SEZ: borned in SEZ.
- Definition of firms in NSEZ:
 - **2.1** Not Movers (total): including those firms created in NSEZ after the SEZ is established.
 - 2.2 New firms in NSEZ created in regions with SEZ
- Time distance: Current year minus year SEZ is established (in district)

Data

Key variables

Key variables need to be used in estimating TFP

- 1 Value-added: defined as output net of goods purchased for resale, indirect taxes, and material inputs
 - 1.1 Expenditure Approach (NBS):
 - $V\!A = Output intermediate Input + payable value added tax$

1.2 Income Approach:

VA = labor compensation¹ + profit + net ind.taxes² + dep.

- 2 Capital stock: total fixed assets value
- 3 Investment(missing): using the firm's nominal capital stock at original purchase prices as an estimate of nominal fixed investment. Annual investment is $I_t = K_t - K_{t-1} + D_t$. assume depreciation runs at 9% annually.

➡ back

¹labor compensation: salary, unemp. insurance, welfare expenditure, pension contributions(after 2003) + housing subsidy(after 2004) ²indirect taxes: sales tax and value added.

Data

Definitions

Productivity is measured by TFP and is estimated by using Olley&Parks1996 to solve simultaneity and selectivity bias:

$$y_{it} = \beta_I I_{it} + \beta_k k_{it} + f_t^{-1}(k_{it}, i_{it}) + \epsilon_{it}$$

- contribution of capital $\phi_{it} = \beta_k k_{it} + f_t^{-1}(k_{it}, i_{it})$, get estimation $\hat{\phi}_{it}$, then get $\hat{\beta}_l$ from $y_{it} = \beta_l l_{it} + \phi_{it} + \epsilon_{it}$
- Second: set $\omega_{it} = g(\omega_{it-1}) + \xi_{it}$, where $E[\xi_{it}|I_{it-1}] = 0$ get the estimation $\hat{\beta}_k$ from

$$y_{it} - \hat{\beta}_I I_{it} = \beta_k k_{it} + g(\omega_{it-1}) + \xi_{it} + \epsilon_{it}$$
$$= \beta_k k_{it} + g(\hat{\phi}_{it-1} - \beta_k k_{it-1})\xi_{it} + \epsilon_{it}$$

• Thus, with $\hat{\beta}_l$ and $\hat{\beta}_k$ we can get the estimation of TFP, $\hat{\log A_{it}}$

Data Definitions

Agglomeration is measured by EG94:

$$\hat{\gamma}_{i}^{\mathsf{EG}} = \frac{\sum_{i=1}^{J} \left(s_{ij}^{\mathsf{c}} - s_{*j}\right)^{2} - \left(1 - \sum_{j=1}^{J} s_{*j}^{2}\right) \sum_{k=1}^{K} (z_{k \in i})^{2}}{\left(1 - \sum_{j=1}^{J} s_{*j}^{2}\right) \left(1 - \sum_{k=1}^{K} (z_{k \in i})^{2}\right)}$$

Compute the comprehensive EG Index through the weighted sum for region j for a given year across all the industries

$$\hat{\gamma}_j^{EG} = \sum_{i=1}^{I} \frac{\mathsf{va}_{ij}}{\mathsf{va}_{i*}} \hat{\gamma}_i^{EG}$$

🍽 back

Measure TFP

OP and LP

		OP		LP			
	ALL	SEZ	nSEZ	ALL	SEZ	nSEZ	
InK	0.495***	0.404***	0.501***	0.336***	0.301***	0.339***	
	(74.61)	(20.80)	(76.34)	(142.22)	(69.12)	(134.21)	
InL	0.589***	0.614***	0.590***	0.350***	0.378***	0.348***	
	(206.06)	(71.21)	(214.97)	(186.64)	(183.21)	(234.54)	
Observations	255814	27247	228567	1645044	270669	1374375	

t statistics in parentheses

* p < 0.1, ** p < 0.05, *** p < 0.01

Staggered DID Event study (common trend test)

The dynamic effects of the establishment of SEZ are based on:

$$TFP_{it} = \theta_i + \alpha_t + \gamma_r + \beta_0 D_{iT} + \sum_{m=1}^M D_{i,t-T=-m}\beta_{-m} + \sum_{s=1}^S D_{i,t-T=s}\beta_s + \epsilon_{it}$$
(1)

where

- \triangleright $D_{i,t-T} = 1$, if a SEZ firm is *m* years prior to entering SEZs and β_{-m} represents the impact of SEZ on TFP;
- \triangleright $D_{i,t-T=s} = 1$, if firm in SEZ after s years and β_s identifies the effect of the SEZ s years following its entrance.

➤ Vars definitions Y ➤ estimates

To identify the effects of SEZ on firms' TFP, I setup a DID with staggered adoption capturing time variation of SEZ experiment across firms.

Here, I focus on two groups: Pre-SEZ firms in the SEZ (treatment) and pre-SEZ firms in the NSEZ (control) $% \left(\frac{1}{2} \right) = 0$

Specification:

$$TFP_{it} = \theta_i + \alpha_r + \gamma_t + \beta D_{it-T} + \delta X_{it} + \epsilon_{it}$$
(2)

 $D_{i,t-T} = treat_i \times post_{i,t-T}$, treatment indicator that is equal to one in the years after firm i entered in the SEZ and zero otherwise. I am interested in the impact of SEZ on the productivity: β .

[11] Treatment: Pre-SEZ firms in SEZ (0.5%). Control: Pre-SEZ firms in NSEZ.

[11] Treatment: Pre-SEZ firms in SEZ (0.5%). Control: Pre-SEZ firms in NSEZ.

Change layers: First layer has all dots gray, second layer adds the SEZ green circumference, third layer adds the blue and red colors.

[11] Treatment: Pre-SEZ firms in SEZ (0.5%). Control: Pre-SEZ firms in NSEZ.

[11] Treatment: Pre-SEZ firms in SEZ (0.5%). Control: Pre-SEZ firms in NSEZ. (a) Raw Data (normalized at *SEZ*₀) (b) Staggered DID

Notes: Vertical bands represent +(-)1.96 times the standard error of each point estimate

[11] Treatment: Pre-SEZ firms in SEZ (0.5%). Control: Pre-SEZ firms in NSEZ. (a) Raw Data (normalized at *SEZ*₀) (b) Staggered DID

But the the policy (where SEZs are set up) is endogenous. Plus the share of pre-SEZ firms in SEZ is small...

Few things that apply to the three identification strategies: (1) x-axis in these figures need to be changed to SEZ age; (2) remove the dots in panel (a) and keep only the lpolys (or whatever polynomial you are using; (3) in the panel (a) of this I1 (and also I3) keep the range of the horizontal axis from -10 to 20; (4) In panel (a) here and the slides to follow with the other identification strategies, interchange blue (treatment) and red (control); (5) In panel (a) Add vertical line at zero; (6) make numbers bigger in all axis; (7) Remove the title from the graph.

A mediation effect model to test the impact mechanism of the agglomeration effect

$$EG_{jrt} = \alpha_{rt} + \theta_j + \gamma D_{it} + \epsilon_{jrt}$$
(3)

$$TFP_{it} = \theta_i + \alpha_{rt} + \beta_1 D_{it} + \beta_2 EG_{jrt} + \delta X_{it} + \epsilon_{it}$$
(4)

➡ back

Mediation Effect through Agglomeration on TFP

	(OLS)	(SepFE)	(corssFE)
Model with TFP regressed on SEZ (path c)			
SEZ	1.222 ***	0.909***	0.922***
	(775.16)	(316.53)	(321.20)
constant	.857***	0.912***	0.909***
	(1241.31)	(1367.41)	(1374.28)
Observations	2310570	2319020	2318971
R-sq	0.206	0.766	0.777
Model with mediator EG_irt regressed on SEZ (path a)			
SEZ	.002 ***	0.00000453	-0.0000282*
	(187.78)	(0.30)	(-1.86)
constant	007***	0 00762***	0 00763***
constant	(1265.86)	(2175.36)	(2172.91)
Observations	2310570	2331564	2331508
R-sq	0.0150	0.881	0.884
Model with TFP regressed on mediator EG_irt and SEZ (paths b and c')			
Agglomeration	19.24***	6.502***	5.686***
	(242.25)	(45.73)	(40.33)
SEZ	1.176***	0.907***	0.920***
	(749.32)	(315.19)	(319.98)
constant	0.720***	0.868***	0.872***
	(810.88)	(681.96)	(690.01)
Observations	2310570	2294206	2294152
R-sq	0.226	0.766	0.777
t statistics in parentheses			

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□= のへの

Sobel Test: indirect effect

In addition, a sobel test permits us to determine whether the mediation agglomeration effect plays a role in how SEZs influence productivity.

	Coef	StdErr	Z	P>Z
Sobel	0.047	0.0003	148.4	0
Goodman-1	0.047	0.0003	148.4	0
Goodman-2	0.047	0.0003	148.4	0
	Coef	StdErr	Z	P>Z
η	0.002	0.000013	187.78	0
β_2	19.24	0.079	242.25	0
Indirect effect	0.047	0.000314	148.412	0
Direct effect	1.176	0.0016	749.32	0
Total effect	1.222	0.0016	775.159	0
Proportion of total effect that is mediated: 0.0381 Ratio of indirect to direct effect: 0.0396				
Ratio of total to direct effect: 1.039				

Sobel-Goodman Mediation Tests

- How do firms get access to SEZs? Comprehensive evaluation system for firms: According to type of projects, investment scale, investment intensity, output efficiency, scientific and technological content
- Who chooses SEZs? Decentralized: The city govern. → provincial govern. → Central government. How SEZ is chosen? Economic development, technology innovation, Energy consumption, environmental protection, Social Insurance coverage. (Provencial-level SEZ → National-level SEZ: if Annual industrial output, tax revenue, export, FDI > certain amount)

➡ back

Share of number of firms in different cases

Туре	Share	
Treated Firm	0.07	
Movers SEZ	5.81	
Movers (Pre-SEZ)	0.95	
Movers (After-SEZ)	4.85	
New in SEZ	7.25	(
SEZ	13.12	
Not Movers (Pre-SEZ)	29.8	
New in NSEZ	39.87	
New in No SEZ	16.62	
Out of SEZ	86.3	
Observations	82,290	

Staggered DID (Total Sample)

	(1) m1	(2) m2	(3) m3	(4) m4	(5) m5	(6) m6	(7) m7	(8) m8	(9) m9	(10) m10	(11) m11	(12) m12
SEZ	0.909*** (199.94)	0.898*** (146.89)	0.973*** (157.50)	0.972*** (157.33)	0.978*** (116.02)	0.957*** (205.65)	0.922*** (205.54)	0.905*** (149.22)	0.974*** (159.00)	0.974*** (158.85)	0.966*** (116.45)	0.959*** (207.01)
size		0.127*** (53.62)	0.109*** (39.96)	0.109*** (39.62)				0.117*** (48.92)	0.0995*** (35.93)	0.0992*** (35.69)		
Inage		-0.0569*** (-25.32)	-0.0310*** (-12.02)	-0.0307*** (-11.83)	-0.0509*** (-12.26)	-0.0277*** (-15.98)		-0.0508*** (-23.07)	-0.0209*** (-8.30)	-0.0208*** (-8.19)	-0.0486*** (-11.97)	-0.0207*** (-12.19)
InROA		0.0695*** (125.15)	0.0144*** (26.37)	0.0145*** (26.34)				0.0645*** (118.92)	0.0129*** (23.74)	0.0129*** (23.74)		
In(Debt ratio)		-0.0454*** (-22.59)	-0.0342*** (-14.66)	-0.0341*** (-14.60)	-0.0217*** (-10.61)	-0.0215*** (-14.94)		-0.0374*** (-19.12)	-0.0331*** (-14.40)	-0.0329*** (-14.30)	-0.0213*** (-10.51)	-0.0204*** (-14.41)
Export		-0.00881*** (-3.07)						0.000799 (0.27)				
State-owned		-0.0700*** (-9.69)	-0.0331*** (-3.96)	-0.0331*** (-3.95)	-0.00470 (-0.40)	-0.0281*** (-4.93)		-0.0586*** (-8.19)	-0.0193** (-2.29)	-0.0198** (-2.34)	-0.00206 (-0.17)	-0.0153*** (-2.72)
Inky			-0.721*** (-341.86)	-0.720*** (-340.89)	-0.623*** (-255.78)	-0.621*** (-379.93)			-0.718*** (-338.14)	-0.718*** (-337.20)	-0.625*** (-256.90)	-0.623*** (-379.20)
In(Export density)			-0.00644*** (-4.90)	-0.00658*** (-4.98)	-0.00674*** (-5.27)	-0.00803*** (-8.86)			-0.00621*** (-4.78)	-0.00628*** (-4.81)	-0.00678*** (-5.40)	-0.00766*** (-8.56)
InEG				0.00819** (2.41)	0.00406 (1.08)	0.00700*** (3.14)				0.00775** (2.29)	0.00611 (1.62)	0.00687*** (3.10)
Insales					0.0936*** (31.02)						0.0855*** (27.83)	
Inprofit_net					0.0618*** (61.35)	0.0648*** (95.48)					0.0604*** (60.71)	0.0618*** (92.47)
InY						0.0437*** (22.77)						0.0353*** (18.48)
_cons	0.912*** (1050.59)	-0.103*** (-4.26)	0.0305 (1.05)	0.0744** (2.14)	-0.174*** (-4.56)	0.275*** (11.59)	0.909*** (1062.27)	-0.0114 (-0.47)	0.111*** (3.76)	0.151*** (4.35)	-0.0640* (-1.65)	0.372*** (15.75)
Observations R-sq	2319020 0.766	777655 0.820	205890 0.949	205053 0.949	251997 0.944	413465 0.945	2318971 0.777	777497 0.830	205374 0.952	204540 0.952	251730 0.947	412935 0.948

t statistics in parentheses

* p < 0.1, ** p < 0.05, *** p < 0.01

Heterogeneous SEZ effects

	(1)	(2)	(3)	(4)	(5)
	quantile20%	40%	60%	80%	100%
Pre1					
SEZ	1.415***	1.035***	0.905***	0.761***	0.487***
	(108.03)	(95.69)	(80.06)	(62.24)	(34.15)
constant	0.127***	0.809***	1.133***	1.468***	2.153***
	(12.03)	(92.62)	(125.78)	(152.22)	(193.97)
Observations	29178	28886	27235	25973	24360
R-sq	0.742	0.688	0.655	0.614	0.596
Pre2	1.275***	1.012***	0.910***	0.779***	0.583***
SEZ	(77.03)	(70.04)	(63.41)	(52.58)	(33.71)
constant	0.257***	0.795***	1.093***	1.430***	1.995***
	(23.13)	(83.01)	(116.61)	(151.27)	(185.39)
Observations	24079	24026	23496	22498	21489
R-sq	0.751	0.722	0.680	0.639	0.590
Pre3	1.176***	0.998***	0.918***	0.786***	0.692***
SEZ	(61.88)	(55.15)	(51.82)	(39.76)	(30.99)
constant	0.344***	0.806***	1.102***	1.420***	1.920***
	(31.22)	(78.18)	(111.24)	(130.46)	(158.05)
Observations	22272	21648	20876	19305	17981
R-sq	0.752	0.731	0.700	0.641	0.611
Pre4 SEZ	1.068*** (44 49)	0.942***	0.929***	0.832***	0.817***

< ≧ ▶ Ξ| = ∽ < (~ 18/31

Mechanism study

Agglomeration effect

- Mediation model: test whether the SEZ affects the productivity through the agglomeration effect.
- Decompose total policy effect into: Indirect (Agglomeration) effect and direct (policy) effect.

$$EG_{jrt} = \theta_j + \alpha_r + \gamma_t + \eta D_{it} + \epsilon_{jrt}$$
(5)

$$TFP_{it} = \theta_i + \alpha_r + \gamma_t + \beta_1 D_{it} + \beta_2 EG_{jrt} + \delta X_{it} + \epsilon_{it}$$
(6)

Mediation effect through Agglomeration on TFP

	(OLS)	(SepFE)	(corssFE)
Model with TFP regressed on SEZ (path c)			
SEZ	1.222 ***	0.909***	0.922***
	(775.16)	(316.53)	(321.20)
constant	.857***	0.912***	0.909***
	(1241.31)	(1367.41)	(1374.28)
Observations	2310570	2319020	2318971
R-sq	0.206	0.766	0.777
Model with mediator EG_irt regressed on SEZ (path a)			
SEZ	.002 ***	0.00000453	-0.0000282*
	(187.78)	(0.30)	(-1.86)
constant	.007***	0.00762***	0.00763***
	(1265.86)	(2175.36)	(2172.91)
Observations	2310570	2331564	2331508
R-sq	0.0150	0.881	0.884
Model with TFP regressed on mediator EG_{irt} and SEZ (paths b and c')			
Agglomeration	19.24***	6.502***	5.686***
	(242.25)	(45.73)	(40.33)
SEZ	1.176***	0.907***	0.920***
	(749.32)	(315.19)	(319.98)
constant	0.720***	0.868***	0.872***
	(810.88)	(681.96)	(690.01)
Observations	2310570	2294206	2294152
R-sq	0.226	0.766	0.777
t statistics in parentheses			

* p < 0.1, ** p < 0.05, *** p < 0.01

▶ Agglomeration Effect

Mediation effect through Agglomeration on TFP Sobel test

	Coef	StdErr	Z	P > Z
Sobel	0.047	0.0003	148.4	0
Goodman-1	0.047	0.0003	148.4	0
Goodman-2	0.047	0.0003	148.4	0
	Coef	StdErr	Z	P>Z
η	0.002	0.000013	187.78	0
β_2	19.24	0.079	242.25	0
Indirect effect	0.047	0.000314	148.412	0
Direct effect	1.176	0.0016	749.32	0
Total effect	1.222	0.0016	775.159	0
Proportion of total effect that is mediated: 0.0381 Patie of indirect to direct effect: 0.0306				

Sobel-Goodman Mediation Tests

Ratio of indirect to direct effect: 0.0396 Ratio of total to direct effect: 1.039

Mediation effect through Agglomeration on TFP

Sobel test across sub-samples

	Botton 20%	40%	60%	80%	100%
Sobel	.041 ***	.0174 ***	.0111 ***	.0098 ***	.0066 ***
	(16.95)	(10.88)	(6.97)	(7.29)	(5.024)
Goodman-1	.041 ***	.0174 ***	.0111 ***	.0098 ***	.0066 ***
	(16.94)	(10.87)	(6.96)	(7.28)	(5.00)
Goodman-2	.041 ***	.0174 ***	.0111 ***	.0098 ***	.0066 ***
	(16.96)	(10.89)	(6.98)	(7.31)	(5.04)
η	.0029 ***	0.0022 ***	.0025 ***	.00196 ***	0.0018 ***
	(29.04)	(19.13)	(20.19)	(13.46)	(9.59)
β_2	14.11 ***	7.88 ***	4.421 ***	5.014 ***	3.57 ***
	(20.87)	(13.22)	(7.43)	(8.68)	(5.90)
Indirect effect	0.041 ***	.0174 ***	.0111 ***	.0098 ***	.0066 ***
	(16.95)	(10.88)	(6.97)	(7.29)	(5.024)
Direct effect	1.762 ***	1.456 ***	1.274 ***	1.068 ***	.638 ***
	(159.94)	(149.323)	(129.89)	(102.35)	(47.43)
Total effect	1.803 ***	1.473 ***	1.286 ***	1.078 ***	.645 ***
	(164.887)	(151.83)	(132.37)	(103.65)	(48.02)
Proportion of total effect that is mediated:	.0226	.0117	.0086	.0091	.0101
Ratio of indirect to direct effect:	.0231	.0119	.0087	.0092	.0103
Ratio of total to direct effect:	1.023	1.012	1.008	1.009	1.010

Sobel-Goodman Mediation Tests

Robustness check <a>> sobeltestFE

Unconstrained

Labor and Capital Decision Rules

Unconstrained firm, it never experiences binding borrowing constraints in any possible future state

- Optimal static labor choice. A firm with (k, z) chooses $\hat{L}(k, z) = \left[\frac{(1-\tau)*(zk^{\alpha\gamma}(1-\alpha)\gamma)}{w}\right]^{\frac{1}{1-(1-\alpha)\gamma}}$
- Current earnings with optimal labor hiring \hat{l} , then $\hat{\Pi} = (1 - \tau) \left[z (k^{\alpha} \hat{L}^{(1-\alpha)})^{\gamma} - w \hat{L} \right]$
- Choice of future capital, k' by the unconstrained firms (collateral constraint is not binding), optimal level of $k' = \hat{K}(z)$, which is the solution of the following problem.

$$\max_{k'}\left[-(1-\tau)k'+\beta\sum_{j=1}^{N_z}\pi_{ij}^z\left(\hat{\mathsf{\Pi}}(k',z_j)+(1-\tau)(1-\delta)k'\right)\right]$$

➡ back

Unconstrained

Debt Decision Rules

With policy functions L̂, K̂, the optimal debt policy b' = B̂(z) is defined by the following equations.

$$\hat{B}(z_i) = \min\left(\tilde{B}\left(\hat{K}(z_i), z_j\right)\right)$$

where $\tilde{B}(\hat{K}(z_i), z_j)$ is the maximum level of debt that an unconstrained firm can hold in which $z' = z_j$ is realized.

Maximum level of debt of the unconstrained firm unaffected by the constraint over any future path of z.

$$egin{split} ilde{\mathcal{B}}(k,z_i)+ar{x}&=(1- au)\Big[z_i\left(k^lpha\hat{\mathcal{L}}^{1-lpha}
ight)^\gamma-w\hat{\mathcal{L}}+(1-\delta)k-\hat{\mathcal{K}}(z_i)\Big]\ &+q\min\left\{\hat{\mathcal{B}}(z_i), heta\hat{\mathcal{K}}(z_i)
ight\} \end{split}$$

🍽 back

Cash-on-hand

- The incumbent firm's problem is a challenging because of the occasionally binding constraints for b' and D.
- \blacktriangleright k and b do not separately determine the choices of k' and b'.
- Collapse two state variables into new variable cash-on-hand, m(k, b, z).

$$m(k,b,z) \equiv (1- au) \left[z (k^{lpha} \hat{L}^{(1-lpha)})^{\gamma} - w \hat{L} + (1-\delta) k
ight] - b$$

$$\blacktriangleright m' \equiv m(k',b',z')$$

Rewrite the incumbent firm's problem in SEZ

$$V^{s}(m,z) = \max_{k',b',D,m'_{j}} \left[D + \max\left\{ V_{x}(m), \beta \int_{z'} V(m',z') dG(z'|z) \right\} \right]$$

s.t. $\bar{X} \le D \equiv m - k'(1 - \tau^{s}) + qb'$
 $b' \le \theta^{s}k'$
 $m' \equiv m(k',b',z')$
 $= (1 - \tau^{s}) \left[z'(k'^{\alpha} \hat{L}^{(1-\alpha)}(k',z'))^{\gamma} - w \hat{L}(k',z') + (1 - \delta)k' \right] - b'$

🍽 back

Cash-on-hand and decision rules \tilde{m} and \bar{k}

Three cases:

1. D Not binding + Financial Constraint Not binding:

$$\hat{D} = m - \hat{K}(1 - \tau^s) + q\hat{B} > \bar{X}$$

2. D binding + Financial Constraint Not binding $(m < \tilde{m}(z) \& \hat{K} \le \bar{K})$ $\tilde{m}(z) = \hat{K}(z)(1 - \tau^s) - q\hat{B} + \bar{X}$ $b' = \frac{1}{q} \left(\hat{K}(z)(1 - \tau^s) + \bar{X} - \tilde{m}\right)$

3. D binding + Financial Constraint binding $(\hat{K} > \bar{K})$

$$ar{K} = rac{ ilde{m} - ar{X}}{(1 - au^s) - q heta}$$

🍽 back

Productivity process

1. $z_{it} = A_i v_{it}$, transitory component follows Pareto distribution with shape parameter μ ,

$$Pr(A_i \leq a) = 1 - a^{-\mu}$$

2. Idiosyncratic component v follows AR(1) process:

$$log(v_{it}) = \rho log(v_{it-1}) + \sigma \epsilon_{it}$$

- **3.** Target, distribution of value added: target the fractions of value added in the top 5 (distribution is skewed in the top 5 percentile of firms accounts for about 34% of the total value added);
- 4. Autocorrelation of value added: 0.796
- 5. Standard deviation of va growth rate: 0.0077

Calibration: externally and internally (SMM)

Parameter		Value				
Corporate income tax rate NSEZ	τ^{ns}	0.33	Internally Calibrated Parameters			
Corporate income tax rate SEZ	τ ^s 0.195 Parameter		Parameter		lue	
Discount factor	β	0.961				
Capital Share	α	0.37			SEZs	NSEZs
Depreciation rate	δ	0.068	Collateral Constraint	θ_i	0.88	0.62
Span of control	γ	0.862	Fixed Operating cost	ξs	0.01	0.034
Shock standard deviation	ά	0.0077	Minimal profit scale	\bar{x}_s	0.003	0
Shock persistence	ρ	0.7968	Entering cost	c_i^e	0.0083	0.0081
Pareto shape parameter	μ	8.6955				

The internally calibrated parameters are the result of simulated methods of moments (SMM). • back

Model Fit

Moments									
Target Moments	D	ata	Model						
I/Y	.0	847	3.2	709					
wL/Y	.7	012	.4	585					
AvgTFP ^{sez} / AvgTFP ^{nsez}	2.4	2.4715		188					
AvgTFP ^{sez} / AvgTFP ^{nsez}	2.5	2.5305		.98					
Exit rate from SEZ		.10		10 .28		827			
New business (%)									
Relative B_0 to Incumb	.1	.1827		034					
	NS	NSEZ		EZ					
	Data	Model	Data	Model					
Average leverage (debt/capital)	.9590	0.7343	.9622	1.046					

- Avg productivity SEZ firms 2.4 times greater than NSEZ
- Avg productivity for firms born in SEZ 2.5 larger than NSEZ
- Avg debt-to-capital ratio higher in SEZ

➡ back
Firm Dynamics (Lifecycle)

Avg k dynamics by age (upper panel):

- 1. Young firms start small at birth
- 2. Age 0, firm face financial const. due to limited k.

三日 のへの

 $\exists \rightarrow b$

Firm Dynamics (Lifecycle)

- Avg b dynamics by age (upper panel):
 - 1. Young firms have largest borrowing levels at beginning and de-leverage over time, conditional on survival.
 - 2. Firm after 6 adopt unconstrained k (high leverage before 6).

Firm Dynamics (Lifecycle)

Avg z dynamics by age (lower panel):

- 1. As older, selection forces unproductive firms to exit.
- Average z increases up to age-4, z of age-0 firms is around 20% lower than that of age-20 firms.

References

- Alder, S., Shao, L., and Zilibotti, F. (2016). Economic reforms and industrial policy in a panel of Chinese cities. *Journal of Economic Growth*, 21(4):305–349.
- Combes, P.-P., Duranton, G., Gobillon, L., Puga, D., and Roux, S. (2012). The productivity advantages of large cities: Distinguishing agglomeration from firm selection. *Econometrica*, 80(6):2543–2594.
- Hopenhayn, H. A. (1992). Entry, exit, and firm dynamics in long run equilibrium. *Econometrica*, 60(5):1127–1150.
- Jacobs, J. (1969). The Economy of Cities. Random House.
- Khan, A. and Thomas, J. (2011). Credit shocks and aggregate fluctuations in an economy with production heterogeneity. *Journal of Political Economy*, 121.
- Lagakos, D. and Waugh, M. E. (2013). Selection, agriculture, and cross-country productivity differences. *American Economic Review*, 103(2):948–80.
- Marshall, A. (1890). The Principles of Economics. McMaster University Archive for the History of Economic Thought.