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Motivation

◮ One challenge facing firms in developing countries is the difficulty in
escaping the ”low-quality trap”

◮ Empirically we see many “successes” and “failures” — Why?
◮ E.g. Japanese electronics/cars in the 1970s and 1980s

◮ Multiple factors could drive the quality upgrading process:
◮ Rising demand for quality (due to rising income)
◮ Competition from foreign firms
◮ Technology transfer from foreign firms
◮ Spillovers from upstream industries
◮ Various government policies . . .

◮ Research Agenda: To understand the role by the driving forces in
shaping industrial quality upgrading dynamics in emerging markets



This Project: China’s Automobile Industry

◮ Setting: China’s automobile industry (2004-2015)

◮ Descriptive evidence: significant quality upgrading and catch-up
◮ Leverage a rich set of vehicle attributes & user experience measures

◮ Descriptive analysis on various underlying mechanisms
◮ (1) rising income; (2) knowledge transfer; (3) industrial linkage

◮ A structural model of HH demand for quality and firm competition
◮ Recover the demand and cost parameters:

◮ Consumers’ willingness to pay for various car attributes
◮ Firms’ incentives and costs of improving quality

◮ Rationalize the observed patterns of sales and quality upgrading

◮ Counterfactual exercises:
◮ Quantify the importance of different forces for quality improvement

and how different forces interact with one another

◮ Today: Descriptive analysis on technology transfer from foreign firms



”Quid Pro Quo” and Technology Transfer

◮ ”Quid pro quo”, or market-for-technology policy

◮ In 1994, China imposed an ownership restriction that limited foreign
carmakers to owning no more than a 50-percent share of any local
venture

◮ In April, the Chinese government promised to lift the restriction by
2022

◮ Different views on the policy

◮ Some think it will facilitate knowledge transfer from global carmakers
and help domestic brand grow

◮ Some think it may deter entry of foreign firms or cause them to
withhold technologies for IPR concerns

◮ We analyse the impact of this policy and assess the implications of
allowing full foreign ownership
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Data

◮ Vehicle quality measures
◮ Trim-level attributes from online sources (2004-2015)

◮ includes over 100 vehicle specifications and features

◮ Scores from JD Power’s Initial Quality Studies (2009-2015)
◮ Measured by the number of problems experienced per 100 vehicles

during the first 90 days of ownership → lower score higher quality

◮ Vehicle registration/license data (2009-2015)
◮ Universe of license registrations: month and city of registration,

brand and model name, major attributes—transmission type, fuel
type, engine size

◮ Household survey data (2009-2015)
◮ 20036 household-year observations are matched with the license data

in first/alternative choice models



List of Vehicle Attributes — Safety Features



List of Vehicle Attributes — Comfort Features



List of Vehicle Attributes — Convenience Features
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Descriptive Evidence for Quality Upgrading

Figure: Time trends in number of features by ownership types



Descriptive Evidence for Quality Upgrading

Figure: Time trends in IQS score by ownership types



Descriptive Evidence for Quality Upgrading

(1) (2) (3) (4) (5) (6)
lnSafety lnSafety ln ConvPlsComf ln ConvPlsComf lnIQS lnIQS

Year 0.0600∗∗∗ 0.0477∗∗∗ 0.0481∗∗∗ 0.0372∗∗∗ -0.0695∗∗∗ -0.0599∗∗∗

(0.006) (0.006) (0.007) (0.007) (0.007) (0.009)

Private*Year 0.0412 0.00343 0.0809∗∗∗ 0.0191 -0.108∗∗∗ -0.0867∗∗∗

(0.023) (0.015) (0.023) (0.019) (0.015) (0.022)

SOE*Year 0.0440∗ 0.0318 0.0485∗∗ 0.0109 -0.0581∗∗∗ -0.0173
(0.020) (0.035) (0.019) (0.030) (0.017) (0.044)

N 1985 941 1985 940 1724 893
adj. R2 0.24 0.22 0.14 0.11 0.45 0.27

◮ Omitted group is the JVs

◮ Odd columns include all models; even columns include a balanced
sample of models that exist for all years

◮ Catch-up (on observables) seem to be driven by model entry and exit

model entry and exit firm level analysis: average portfolio and dispersion
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Technology Transfer: an Overview

◮ Technology transfer: foreign firms → JVs → domestic firms

◮ Hence, we examine technology transfer in two steps:

1 Transfer from foreign firms to JVs: whether foreign firms bring their
technologies to the JVs

2 Transfer from JVs to SOEs: whether a SOE picks up technologies
from various JVs it partners with

◮ Technology transfer is not just narrowly limited to access to
technology, but also includes know-hows in:

◮ how to produce a features more cheaply or customize it

◮ how to design the car to work better with the technology



Summary Statistics of Technology Adoption

◮ We look at leader-follower patterns for four technologies

◮ Dual-clutch transmission (DCT)

◮ Turbocharged petrol engines (Turbo)

◮ Gasoline direct injection (GDI)

◮ Variable gear-ratio steering (VGRS)

Table: Summary statistics for JV technology adoptions

count mean mean(’15) Foreign adopted JV adopted
DCT 7376 .08 .15 2006 2009
Turbo 7373 .26 .48 2004 2004
GDI 7376 .24 .44 2004 2004
VGRS 7376 .03 .07 2004 2005



Descriptive Evidence: DCT

Figure: Adoption of DCT by three foreign firms and their JVs



Descriptive Evidence: Turbo

Figure: Adoption of Turbo by three foreign firms and their JVs



Descriptive Evidence: VGRS

Figure: Adoption of VGRS by three foreign firms and their JVs



Descriptive Regression: Set-up

◮ We estimate the following regression, separately for each technology:

JV Adoptionit = β0 + β ∗ ForeignAdoptionit + λt + λs + εit

◮ Each observation is at the trim-year level

◮ JV Adoptionit takes value 1 if trim i has the technology in year t

◮ ForeignAdoptionit takes value 1 if (any trim under) the foreign
partner has adopted the technology by year t

◮ λt controls for technology-specific time trend

◮ λs controls for each segment’s average propensity to adopt the
technology

◮ We also look at different lags after foreign partners’ first adoption:

JV Adoptionit = β0 +
∑

τ

βτ ∗ ForeignAdoptiont−τ
it + λt + λs + εit



Descriptive Regression: Results

(1) (2) (3) (4)
DCT Turbo GDI VGRS

FAdopted 0.142∗∗∗ 0.234∗∗∗ 0.164∗∗∗ 0.0542∗∗∗

(0.00706) (0.0130) (0.0163) (0.00500)
Observations 6083 6080 6083 6083
R-squared 0.128 0.245 0.247 0.124
Year FE Yes Yes Yes Yes
Segment FE Yes Yes Yes Yes

Standard errors in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01

◮ JV trims are more likely to adopt each technology when the foreign
partner has adopted it

◮ Impact of foreign adoption appears significant when compared to
average adoption rate of each technology



Descriptive Regression: Results

(1) (2) (3) (4)
DCT Turbo GDI VGRS

FAdoptedSameYear 0.0312∗ 0.0875∗∗∗ 0.0878∗∗∗ 0.0756∗∗∗

(0.0163) (0.0227) (0.0218) (0.0139)

FAdopted1To3Years 0.0189∗ 0.190∗∗∗ 0.139∗∗∗ 0.0214∗∗∗

(0.0115) (0.0156) (0.0170) (0.00765)

FAdopted3YearsPlus 0.219∗∗∗ 0.332∗∗∗ 0.376∗∗∗ 0.0681∗∗∗

(0.00823) (0.0152) (0.0191) (0.00601)
Observations 6083 6080 6083 6083
R-squared 0.168 0.264 0.293 0.129
Year FE Yes Yes Yes Yes
Segment FE Yes Yes Yes Yes

Standard errors in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01



Endogenous firm quality

◮ Positive correlation in JVs’ and foreign partners’ adoptions could be
driven by

◮ Technology transfer from foreign firms to JVs

◮ Positive correlation between in quality of foreign firms and JVs

◮ The key empirical challenge is to separate firm-wide learning from
intrinsic firm quality

◮ This is challenging because both show up as earlier adoptions

◮ Controlling for firm fixed effect does not work well because zero
”first difference” before treatment

◮ Our solution: use within-firm variations between technologies



Estimation Framework

◮ We estimate the following regression:

JV Adoptionifkt = α+
∑

k′

βk′ForeignAdoptionfkt ∗ ✶(k = k′)

+Xiftγ + λft + λkt + λsk + εifkt

◮ Each observation is at the trim-year-technology level

◮ We pool four technologies in one regression and allow a separate
coefficient for each technology

◮ We control for firm-year fixed effects, which are common to all
technologies

◮ Implicit assumptions:
◮ Changes in adoption rates common to all technologies are driven by

firm quality or other shocks
◮ Additional technology-specific change is driven by technology transfer

◮ We scale the adoption dummies to equalize the average ”adoption
rates” of four technologies



Results

(1) (2) (3) (4)
Adopted Adopted Adopted Adopted

FAdoptedDCT 0.469∗∗∗ 0.358∗∗∗ 0.371∗∗∗ 0.371∗∗∗

(0.0220) (0.0233) (0.0236) (0.0234)

FAdoptedTurbo 0.234∗∗∗ 0.119∗∗∗ 0.266∗∗∗ 0.266∗∗∗

(0.0258) (0.0268) (0.0277) (0.0275)

FAdoptedGDI 0.180∗∗∗ 0.0798∗∗ 0.250∗∗∗ 0.250∗∗∗

(0.0325) (0.0326) (0.0349) (0.0345)

FAdoptedVGRS 0.428∗∗∗ 0.283∗∗∗ 0.279∗∗∗ 0.279∗∗∗

(0.0219) (0.0232) (0.0235) (0.0233)
Observations 30412 30412 30412 30412
R-squared 0.153 0.204 0.244 0.257
Firm FE No Yes Yes No
Firm-year FE No No Yes Yes
Trim Characteristics No No No Yes

Standard errors in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01

Coefficients need to be scaled back for proper interpretation
Scaling parameters for four technologies are 3.3, 1, 1.1, 7.9, respectively
We control for tech-year and tech-segment fixed effects in all columns



Permutation test

◮ We use a permutation test to further assess the statistical
significance of the estimates. We

◮ randomly assign a placebo foreign partner to each of the 20 JVs

◮ repeat the estimation under the placebo firm linkages

◮ repeat the test 100 times, plot the estimates, and see where our
original estimates stand in the distribution

◮ The p-values of our original estimates are 0.02, 0.04, 0.02, and 0.05,
respectively



JV-SOE Transfer: Set-up
◮ The equation has exactly the same form:

SOEAdoptionifkt = α+
∑

k′

βk′JV Adoptionfkt ∗ ✶(k = k′)

+Xiftγ + λft + λkt + λsk + εifkt

◮ We differ from the previous set-up in the following ways

◮ We replace VGRS with the following technologies

◮ Emergency Brake Assist (EBA)

◮ Acceleration Skip Control (ASR)

◮ Electronic Stability Control (ESC)

◮ Each SOE may have multiple JVs from technology transfer is
possible

◮ We experiment with different boundaries of learning

◮ from any models by affiliated JVs

◮ only from models of the same vehicle type

◮ only from models in the same segment



JV-SOE Transfer: Results

(1) (2) (3) (4)
HasTech HasTech HasTech HasTech

JVTechDCT 0.403∗∗∗ 0.172∗∗∗ 0.129∗ 0.166∗∗

(0.0627) (0.0664) (0.0673) (0.0667)
JVTechTurbo 0.0152 -0.143∗∗ -0.163∗∗∗ -0.131∗∗

(0.0547) (0.0590) (0.0600) (0.0595)
JVTechStraight 0.230∗∗∗ 0.0633 -0.0550 -0.0272

(0.0564) (0.0605) (0.0616) (0.0612)
JVTechEBA 0.134∗∗ 0.00626 -0.0563 -0.0146

(0.0522) (0.0570) (0.0571) (0.0567)
JVTechASR 0.124∗∗ -0.00365 -0.0596 -0.0119

(0.0547) (0.0595) (0.0601) (0.0598)
JVTechESC 0.104∗ -0.0314 -0.0951 -0.0425

(0.0558) (0.0604) (0.0612) (0.0609)
Observations 20480 20480 20480 20480
R-squared 0.0977 0.125 0.171 0.186
Firm FE No Yes Yes No
Firm-year FE No No Yes Yes
Trim Characteristics No No No Yes

Standard errors in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01

Coefficients need to be scaled back for proper interpretation
Scaling parameters are 22, 2.1, 9, 1, 1.5, 1.6, respectively
We control for tech-year and tech-segment fixed effects in all columns



Technology Transfer: Conclusions

◮ We find foreign brands are more likely to adopt technologies their JV
partners have adopted, especially after a lag of three years

◮ This suggests foreign firms are not completely withholding
technologies for IPR concerns

◮ We find no evidence for technology transfer from JVs to SOEs. This
negative result could arise in two opposite scenarios

◮ There is little technology transfer. JVs are successful in protecting
their know-hows

◮ There is industry-wide transfer through channels such as personnel
movement and upstream linkage

◮ Scrapping ownership restriction may not have a very dramatic impact



Outline

Data and Descriptive Evidence

Technology Transfer

Structural Model and Estimation



Structural Model: Overview

Demand side: micro BLP

◮ A model of household purchasing decisions of cars, incorporating:
◮ Quality attributes and household preference heterogeneity

◮ Estimation: constrained MLE

Supply side: endogenous price and quality

◮ Timing assumptions:

1. Take the set of products offered as exogenously given
2. A firm chooses the number of safety and comfort features for all its

models to maximize profits under rational expectation of quality and
pricing decisions by all firms

3. Conditioning on the choices of features, each firm sets prices as
under Bertrand-Nash competition to maximize static profits

◮ Marginal costs: FOC from static maximization

◮ Fixed costs: FOC from optimal product choice

jump to results



Demand

◮ A model of household purchasing decisions of cars, incorporating:
◮ Quality attributes and household preference heterogeneity

◮ Utility of individual i in market (province-year) m buying model j:

umij = µmij + δmj + εmij ,

where µmij takes one of the following 2 specifications (abbrev. m)

µ
1
ij = −

α1

yi
Pj + β1FSilog(Sizej) + β2Kidi ∗ Safetyj (Spec 1)

µ
2
ij = −

α1

yi
Pj + β1FSilog(Sizej) + β2KidiSafetyj (Spec 2)

+β3 ∗ ln(yi)Safetyj + β4 ∗ ln(yi)CCj

◮ y: income; FS: family size; Kid: dummy for having kids

◮ We specify product-market specific utility as: variable definitions

δmj = αPj + γ1ln(FCmj) + γ2ln(Powerj)

+ γ3Safetyj + γ4CCj + ρj + ωm + ξmj



Supply: Endogenous Price and Quality Choice

Timing assumptions:

1. Take the set of products offered as exogenously given

2. A firm chooses the number of safety and comfort features for all its
models to maximize profits under rational expectation of quality and
pricing decisions by all firms

3. Conditioning on the choices of features, each firm sets prices as
under Bertrand-Nash competition to maximize static profits

In equilibrium:

◮ No firm has incentive to unilaterally deviate in prices, holding
features constant

◮ No firm has incentive to unilaterally deviate in quality after
considering price responses by rivals



Supply: Marginal Costs
◮ The annual national profit for firm f is (suppress subscript t):

πf =
M∑

m=1

∑

j∈F

(p0
j − Tj(p

0
j )−mcj)Mmsmj =

∑

j∈F

(p0
j − Tj(p

0
j )−mcj)Sj

◮ Each firm chooses {p0j , j ∈ F} to maximize its total profits details :

Sj(1−
∂Tj

∂p0
j

) +
∑

r∈F

(p0
r − Tr −mcr)

∂Sr

∂p0
j

= 0, ∀j

⇒ p0 = mc + T+∆−1[S(1−
∂T

∂p0
)].

◮ ∆ is a J by J matrix, whose (j, r)th term is −
∂Sr

∂p0

j

if r and j are

produced by the same firm, and 0 otherwise

◮ Explicitly modeling the taxes: Tj = p0
j − pf

j = p0
j −

p0

j∗(1−tcj)

1+tva
j

+ts
j

◮ Parameterize the marginal costs (baseline spec):

mctj = γ1 ∗ log(FCtj) + γ2 ∗ log(EngineSizetj) + γ3(CarSizetj)

+ γ4 ∗ Safetytj + γ5CCtj + τt + χj + ωtj ,



Supply: Fixed Costs

◮ Specify fixed cost to be quadratic in the number of features Xkjt

◮ k takes 2 values, denoting the num of safety and num of
comfort/convenience features respectively

◮ The equilibrium condition for Xkjt to be optimal is given by:

∑

r∈F

(
∂πrt

∂Xkjt

+
∑

g∈G

∂πrt

∂pgt

∂pgt

∂xkjt

) = αk0 + αk1 ∗ xkjt + εkjt

◮ The marginal gain from deviating from the current quality level
(increase in profits) equals the change in fixed costs

◮ F denotes the set of products by firm F, and G denotes all products



Estimation Procedure: Demand

Constrained MLE:

◮ Maximize the joint likelihood of the observed first choice in the
household survey, subjected to the constraint that model-predicted
market shares from pseudo-households match observed market shares

◮ Simulated demand from pseudo households details

Estimation steps:

1. Given a set of non-linear parameters, θ2, calculate µij for each
pseudo household. Back out a vector of product-specific utility δ.

2. Fix δ. For the same set of θ2, calculate µij , now for real households
in the survey data. Calculate the individual likelihood.

3. The objective function is the sum of log likelihoods of each
household buying its observed choice.

4. Find θ2 that maximize the sum of the likelihood



Estimation Results: Willingness to Pay

Table: Price equivalent of each feature at different income levels (yuan)

Income (million) 0.05 0.1 0.15 0.2 0.3
Safety, Specification I 921 1200 1400 1500 1600
Safety, Specification II -1400 287 1800 2900 4800
CC, Specification I 4200 5500 6200 6600 7000
CC, Specification II 1500 4000 5800 7200 9200

model fit



Estimation Results: Marginal Cost

(1) (2) (3) (4)
MC MC MC MC

LogFC -0.00985 0.0209∗∗∗ 0.0215∗∗∗ 0.0199∗∗∗

(0.00949) (0.00442) (0.00445) (0.00442)

LogES 0.0965∗∗∗ 0.0341∗∗∗ 0.0337∗∗∗ 0.0342∗∗∗

(0.00775) (0.00394) (0.00392) (0.00392)

LogSize -0.0365∗∗ 0.0739∗∗∗ 0.0845∗∗∗ 0.0781∗∗∗

(0.0176) (0.0190) (0.0191) (0.0193)

Safety 0.00824∗∗∗ 0.00154∗∗∗ 0.000848 0.00159∗

(0.000412) (0.000253) (0.000603) (0.000892)

CC 0.00282∗∗∗ 0.00469∗∗∗ 0.00362∗∗∗ 0.00247∗∗∗

(0.000505) (0.000243) (0.000562) (0.000740)

SafetyJV 0.000773
(0.000652)

CCJV 0.00129∗∗

(0.000620)

Safety2 0.00000135
(0.0000401)

CC2 0.000124∗∗∗

(0.0000399)
Observations 1945 1945 1945 1945
R-squared 0.818 0.983 0.984 0.984
Model FE No Yes Yes Yes
Year FE Yes Yes Yes Yes
Segment FE Yes No No No

◮ Adding one safety features
costs around 1540

◮ Adding one comfort or
convenience feature costs
around 4690

◮ Marginal cost is convex in
the number of features

◮ Marginal cost of quality
provision is higher for JVs

◮ Fixed cost estimation in
progress



Thank You!
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