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Abstract

How much the cross country di¤erences in output per capita is attributed to
di¤erences in capital accumulation or to TFP is a subject of great controversy.
This paper provides quantitative assessment for these two hypotheses using �rm
level data from UK and China. It models heterogeneity in the capital goods
prices to capture a generic family of distortions that would lead to aggregate
TFP loss, and allows for di¤erent forms of capital adjustment costs to summarize
investment frictions that may a¤ect capital accumulation. Our identi�cation
strategy allows for many unobserved heterogeneities and measurement errors,
which are crucial for consistent estimation for both factors. Counterfactural
simulations indicate that on average reducing the dispersion of capital goods
prices to the UK level would enhance aggregate TFP by 20% in China, and
moving the capital adjustment costs to the UK level would increase capital
stock by 5% in China, which respectively contribute to two-thirds and one-third
increase in aggregate output. We �nd that small, private-owned �rms without
political connection in east China face unfavorable distortions.
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1 Introduction

Understanding the large and persistent di¤erences in output per capita across coun-
tries has been the central theme in growth theory and development economics for a
long time. The macro-growth literature typically assumes a homogeneous aggregate
production function such as the Solow model. By testing the beta convergence, a
large empirical literature on economic growth, represented by Mankiw, Romer and
Weil (1992) and Barro and Sala-I-Martin (1995), suggests the crucial role of aggregate
capital accumulation in less developed economies catching up the developed ones. In
contrast, extensive evidence from the micro-development literature, as surveyed in Ba-
naerjee and Du�o (2005), has found enormous heterogeneity of rates of return to the
same production factors within a single economy. Hsieh and Klenow (2009) calculate
that reallocating factors to equalize marginal revenue products to the extent observed
in the U.S., the total factor productivity (TFP) would increase 30-50% in China and
40-60% in India. Not surprisingly, how much the cross country di¤erences in output
per capita is attributed to di¤erences in capital accumulation or to TFP remains a
subject of great controversy.
This paper provides quantitative assessment for these two hypotheses using �rm

level data from China and UK. Investment in practice is subject to various constraints.
Some of these constraints are common to all the �rms within the same economy. For
example, a less developed �nancial market compared to that in UK implies more
investment frictions faced by all �rms in China. Other constraints may be �rm speci�c
due to idiosyncratic distortions in policies and institutions. For example, the state-
owned banking system in China may o¤er di¤erent interest rates on loans based on
ownership of each particular �rm. A long list of various frictions and distortions has
been well documented in the recent growth and development literature. Although
understanding each speci�c channel is interesting and important, the focus in this
paper is to estimate the overall signi�cance of frictions on capital accumulation and
distortions on TFP.
To achieve this goal, we estimate a dynamic neoclassical investment model that

incorporates homogeneous capital adjustment costs and heterogeneous capital goods
prices. This model o¤ers a useful economic laboratory to study the two potential
sources of cross country di¤erences in output per capita. On the one hand, in a vari-
ety setting, capital adjustment costs have been adopted by the investment literature
to summarize frictional elements that reduce, delay or protract investment (Khan and
Thomas, 2006), while the frictionless investment model o¤ers a natural benchmark
where capital accumulates instantaneously and costlessly according to changes in eco-
nomic conditions. On the other hand, idiosyncratic distortions which create wedges in
the marginal revenue product of capital across �rms can lead to a loss in the aggre-
gate TFP (Restuccia and Rogerson, 2008). Investment optimality implies the equality
between the marginal revenue product of capital and the user cost of capital for each
�rm. Hence modelling capital goods price heterogeneity captures a generic family of
distortions of this type.
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Our estimation approach is fully parametric and structural under this framework.
For given aggregate relative prices, the model we consider speci�es the complete envi-
ronment in which investment decisions are taken: the user cost of capital, production
technology, demand schedule, the stochastic process characterizing growth and un-
certainty, and di¤erent forms of capital adjustment costs. Structural parameters are
estimated using a method of simulated moments (MSM) by matching simulated model
moments with empirical moments from panels of UK and Chinese manufacturing �rms.
The estimated investment model matches important features of pro�t-to-sales ratio,
log sales-to-capital ratio, investment rate and sales growth rate in their distribution
and dynamics. Counterfactual simulations indicate that on average moving the capital
adjustment costs to the UK level would increase aggregate capital stock by 5.3% in
China, which contributes a 3.5% increase in aggregate output. Reducing the disper-
sion of capital goods price to the UK level would enhance aggregate TFP by 20.1% in
China and this is translated into a 6.9% aggregate output increase.
This paper is closely related to the recent growing literatures on misallocation.

Among others, Hsieh and Klenow (2009) o¤ers a seminal framework in which the neg-
ative e¤ect of distortions on aggregate TFP can be summarized by the dispersion of
log sales-to-capital ratio. However, an investment model with homogeneous frictions,
such as non-convex capital adjustment costs, �nancing constraints or uninsurable in-
vestment risk, can only account for less than 10% dispersion in the data, as highlighted
by Midrigan and Xu (2009). This big gap between the model and the data motivates
us to model and estimate idiosyncratic distortions in the form of heterogeneous capital
goods prices, whose dispersion can be directly translated into aggregate TFP loss.
Our assumption of idiosyncratic capital goods prices in an investment model is

equivalent to the idiosyncratic rental cost of capital in a rent model such as in Hsieh
and Klenow (2009). However, as indicated by the �rst order condition of the invest-
ment model, in addition to the heterogeneity of capital goods prices, the dispersion of
log sales-to-capital ratio can also be caused by the heterogeneity of capital share in pro-
duction or demand elasticity, measurement errors in the data and capital adjustment
costs, which are indeed well-recognized in Hsieh and Klenow (2009).
We contribute to this identi�cation challenge with three designs. First, we use

dispersion of pro�t-to-sales ratio and log sales-to-capital ratio jointly to estimate the
unobserved heterogeneity in the capital share in production. We �nd big dispersion
in this dimension in both UK and China. A model missing such heterogeneity would
overestimate the heterogeneity in capital goods prices, while the magnitude of aggre-
gate TFP loss depends positively on the share of capital in the production. Second, we
separate the between-group dispersion from the within-group dispersion of these two
variables. Together with their own serial correlation, the model pins down the mea-
surement errors in capital, sales, and pro�t. We do �nd greater measurement errors in
the Chinese data than in the UK. Finally, we match moments which characterize the
�rst order condition of optimal investment to estimate capital adjustment costs. We
�nd a model missing capital adjustment costs would underestimate the dispersion in
capital goods prices.
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Nevertheless, even after controlling for all these potential concerns, we still �nd
signi�cant heterogeneity in the capital goods prices in China, which is about 1.6 times
as that in UK. All else being equal, if one interprets the log sales-to-capital ratio as
an informative indicator on capital goods prices, �rms that are small, private-owned,
locate in east area and have no political connection in our Chinese sample are found to
have faced signi�cantly higher capital goods prices than their counterparts. Therefore
aggregate TFP and aggregate output would be substantially enhanced if policy and
institutional distortions were alleviated so that more capital was reallocated towards
these �rms. Such policy experiment is consistent with the explanation on why China
has been growing so fast as in Zilibotti, Storesletten, and Song (2010).
This paper also contributes to the estimation and properties of the investment-

capital adjustment costs literature. In terms of estimation, Cooper and Haltiwanger
(2006) and Bloom (2009) �rst adopt the MSM to recover structural parameters of
capital adjustment costs. Similar to their �ndings, we show that a mix of quadratic
adjustment costs and irreversibility matches our �rm-level data best. However, be-
yond simply estimating an investment-capital adjustment costs model, this paper �rst
explicitly models and estimates unobserved heterogeneities and measurement errors
using the structural approach. Speci�cation tests indicate that ignoring such hetero-
geneities or measurement errors would lead to a severe upward bias in the estimates
of adjustment costs.
Regarding the e¤ect of capital adjustment costs on capital accumulation, we �nd

although irreversibility is crucial in generating a sizeable investment inaction in the
data, it is the quadratic adjustment costs that reduce the capital stock. This empirical
�nding is consistent with the interesting properties demonstrated in Abel and Eberly
(1999) that irreversibility may increase or decrease capital accumulation due to the
opposite user cost e¤ect and hangover e¤ect. In contrast, as pointed out in Bond,
Söderbom and Wu (2011), the presence of quadratic adjustment costs unambiguously
increases the user cost of capital hence leads to lower capital stock than otherwise.
Indeed, even at the same aggregate relative prices, our investment model predicts
more capital accumulation in China if its quadratic adjustment costs were reduced to
the level of UK. Economic reforms that bring a better investment climate for everyone
would therefore stimulate more capital accumulation (World Bank, 2005).
The rest of the paper is organized as follows. Section 2 outlines the investment

model and explains the measures for losses in aggregate TFP and capital stock. Section
3 presents the data and our empirical speci�cation. Section 4 discusses identi�cation
and reports the empirical results. Section 5 provides the counterfactual simulations
and links our �ndings to observable �rm characteristics. Section 7 concludes.
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2 The Model

2.1 Production and Demand

Consider an economy made of N existing �rms. Each �rm hires homogeneous capital
goods and variable inputs (materials, labor and managers) from the factor markets,
produces one single �nal good and is the monopolist in its product market. Compe-
tition in factor markets leads to common capital goods price PK and variable inputs
price w across all the �rms. Monopoly power in the product market implies non-zero
pro�t.
To be more speci�c, �rm i in year t uses productive capital stock bKi;t, and a vector

of variable inputs Li;t to produce Qi;t unit of product i, according to a stochastic
constant returns to scale Cobb-Douglas technology,

Qi;t = Ai;t bK�i
i;tL

1��i
i;t

where Ai;t represents the randomness in productivity; the capital share �i satis�es
0 < �i < 1.
Each product i is demanded in a monopolistic product market according to an

isoelastic, downward-sloping, stochastic demand curve

Qi;t = Xi;tP
�"i
i;t

where Xi;t represents the randomness in demand; �"i < �1 is the demand elasticity
with respect to price.
At each year, for a given predetermined capital stock, productivity and demand

realization, �rm i chooses variable inputs Li;t to maximize its instantaneous gross pro�t

�i;t = max
Li;t
fPi;tQi;t � wLi;tg

Optimization yields the maximized value of gross pro�t

�i;t =
hi

1� i
Z
i
i;t
bK1�i
i;t (1)

where
Zi;t = Xi;t (Ai;t)

"i�1

i =
1

1 + �i("i � 1)
(2)

and

hi = (1� i)
�
i"i � 1
w

�i"i�1
(i"i)

�i"i

Denote sales as Yi;t � Pi;tQi;t.1 The linear homogeneity of the production technol-
ogy and the isoelastic demand schedule also imply that the maximized gross pro�t is

1We follow the investment literature, such as Abel and Eberly (1999), in using Q to denote the
quantity of output, calling the product of price and quantity of output as sales and denoting it as Y .
In the produtivity literature, such as Hsieh and Klenow (2009), Y is simply the quantity of output,
which is equivalent to the Q in our model.
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a constant proportion of sales, .

�i;t
Yi;t

=
1

i"i
= �i(1�

1

"i
) +

1

"i
=
1

"i
(1� �i) + �i (3)

In Equation (1) we have used Zi;t to incorporate stochastics from both demand Xi;t

and productivity Ai;t, which is called �pro�tability�in Cooper and Haltiwanger (2006)
or �business condition�in Bloom (2009). The law of motion for Zi;t is given by

logZi;t = �it+ zi;t (4)

zi;t = �zi;t�1 + ei;t

where 0 < � < 1, ei;t
i:i:d:� N(0; �2), and zi;0 = 0. Equation (4) implies a common

level of persistence and uncertainty in the stochastic productivity/demand. However,
the growth rate of productivity/demand is �rm-speci�c and the productivity/demand
shocks are idiosyncratic.

2.2 Distortions and Frictions

In contrast to variable inputs, investment may be subject to both distortions and
frictions. Similar to Restuccia and Rogerson (2008) and Hsieh and Klenow (2009), we
use � i to generically refer to the e¤ect of various policy or institutional distortions on
the purchase price of capital of �rm i. Therefore the actual capital goods price faced
by �rm i is

PKi = (1 + � i)P
K

For example, a positive value of � i corresponds to a �rm with no access to �nance
hence facing an actual capital goods price higher than the competitive price; while an
investment tax credit is represented by a negative value of � i.
Meanwhile various investment frictions prevent instantaneous and costless adjust-

ment of capital stock. Following Cooper and Haltiwanger (2006) and Bloom (2009),
we consider three forms of capital adjustment costs,

G(Zi;t; Ki;t; Ii;t) =
bq

2

�
Ii;t
Ki;t

�2
Ki;t � biPKi Ii;t1[Ii;t<0] + bf1[Ii;t 6=0]�i;t

where 1[It<0] and 1[It 6=0] are indicators for negative and non-zero investment; b
i can be

interpreted as the di¤erence between the purchase price and the sale price expressed
as a percentage of the purchase price of capital goods; bf is interpreted as the fraction
of gross pro�t loss due to any non-zero investment; and bq measures the magnitude of
quadratic adjustment costs.
By paying the cost of purchasing capital and adjusting capital, new investment Ii;t

contributes to productive capital bKi;t immediately in year t, which depreciates at the
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end of the year.2 The law of motion for capital is therefore

Ki;t+1 = (1� �) (Ki;t + Ii;t) � (1� �) bKi;t (5)

where � is the constant depreciation rate common across �rms.

2.3 Investment Decision

De�ne the net pro�t of the �rm as the gross pro�t net of quadratic and �xed adjustment
costs

�(Zi;t; Ki;t; Ii;t) =
�
1� bf1[Ii;t 6=0]

�
�(Zi;t; Ki;t; Ii;t)�

bq

2

�
Ii;t
Ki;t

�2
Ki;t

In each period investment is chosen to maximize the discounted present value of divi-
dends, which is the net pro�t minus investment expenditure. Investors allocate capital
until the required rate of return on capital is equalized across di¤erent �rms. Suppose
this required rate of return is r, at which investors discount future dividends, this
problem is de�ned by the stochastic Bellman equation,

V (Zi;t; Ki;t) = max
Ii;t

�
�(Zi;t; Ki;t; Ii;t)�

�
1� bi1[Ii;t<0]

�
PKi Ii;t

+ 1
1+r
Et [V (Zi;t+1; Ki;t+1)]

�
(6)

together with the law of motion (4) and (5).
It is known that in the presence of adjustment costs, this model in general has no

analytical solution. However, using analytical solution in the frictionless case as bench-
mark provides important predictions on the model properties. If G(Zi;t; Ki;t; Ii;t) = 0,
the investment Euler equation is equivalent to the �rst-order condition in a static
investment problem,

MRPKi = Ui

The marginal revenue product of capital in this model is proportional to the sales-
to-capital ratio, due to the linear homogeneity of sales with respect to productiv-
ity/demand and capital stock.

MRPKi =
@�i;t

@ bKi;t

= hi

 
Zi;tbKi;t

!i
=
1� i
i"i

Yi;tbKi;t

(7)

The user cost of capital depends on the �rm-speci�c distortion and a common factor
J ,

Ui = (1 + � i) J

where J is known as the Jorgensonian user cost of capital

J � PK
�
r + �

1 + r

�
(8)

2Compared with alternative lagged timing assumption, such as Kt+1 = (1� �)Kt+ It, our timing
assumption does not a¤ect the qualitative implication of the model, but allows for a closed-form
solution to the investment problem in the frictionless case, which does not involve any expectation
term. This provides a convenient benchmark for studying the e¤ects of distortions and frictions.
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Equivalent to the Equation (2.11) in Hsieh and Klenow (2009), intuitively, the
after-distortion marginal revenue product of capital MRPKi

1+� i
is equalized across �rms

due to capital market competition. The before-distortion marginal revenue product
of capital MRPKi therefore must be higher in �rms that face disincentives (� i > 0),
and be lower in �rms that bene�t from subsidies (� i < 0).
Together with Equation (2), value maximization therefore implies the frictionless

log sales-to-capital ratio of �rm i is determined by the common Jorgensonian user cost
of capital J , the �rm-speci�c distortion � i, and the �rm-speci�c capital share �i and
demand elasticity "i.

log

 
Yi;tbKi;t

!�
= log J + log (1 + � i)� log

�
�i

�
1� 1

"i

��
(9)

It is also straightforward to derive the optimal productive capital stock in the
frictionless case, bK�

i;t � (Ii;t +Ki;t)
� = HiZi;t (10)

which implies the optimal frictionless investment rate as below�
Ii;t
Ki;t

��
= Hi

�
Zi;t
Ki;t

�
� 1 (11)

where

Hi =

�
hi
Ui

� 1
i

Equation (11) and (10) imply that without any friction, the optimal investment rate
is a linear function of productivity/demand relative to inherited capital stock to meet
the imbalance between the optimal productive capital stock and the level of produc-
tivity/demand in each period, where the slope term Hi re�ects production technology
�i, demand elasticity "i, the factor price of variable inputs w, and the user cost of
capital Ui.
In the presence of adjustment costs, optimal investment policy can be solved out us-

ing numerical dynamic programming method. Figures 1.1-1.3 illustrate these policies
under di¤erent forms of adjustment costs. First, irrespective to the form of adjust-
ment costs, the optimal investment policy is always a non-decreasing function of the
marginal revenue product of capital. Second, in the presence of quadratic adjustment
costs capital accumulation is through a series of small and continuous adjustment.
Finally, the optimal investment policy is a �barrier control�policy in the presence of
irreversibility and a �jump control�policy in the presence �xed adjustment costs.
Another important property of this investment model is that, despite the presence

of adjustment costs, in the long run both capital stock and sales will grow at the same
rate as the stochastic productivity/demand (see Bloom, 2000). This is essentially
because when a �rm is on its balanced growth path, the gap between friction and
frictionless capital stock is bounded.

� log Yi;T � lim
T!1

1

T
ln (Yi;T+t=Yi;t) = lim

T!1

1

T
ln
� bKi;T+t= bKi;t

�
= �i (12)
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2.4 Losses in Aggregate TFP and Capital Stock

To study the e¤ect of distortions on aggregate TFP loss, consider N �rms in the
economy each with capital stock bKi. Without idiosyncratic distortions, the �rst-best
allocation of capital implies that

bK�
i;t =

Zi;t
Z�t
cKt

and

Y �t =
"h

1�  (Z
�
t )
 cKt

1�

where bKt =
PN

i=1
bKi;t is the existing aggregate capital stock of the economy; Z�t =PN

i=1 Zi;t is the �rst-best aggregate TFP.
3 Y �t is the �rst-best revenue-based aggregate

output.
In contrast, distortions in the capital goods prices may lead to capital misallocation

and potential loss in aggregate TFP. The actual aggregate output is

Yt =
"h

1� 
XN

i=1

�
Zi;t

bK1�
i;t

�
=
"h

1� Z

t
bK1�
t

in which the actual aggregate TFP is

Zt =

2664
�PN

i=1
Zi;t

k1�i;t

�
�PN

i=1
Zi;t
ki;t

�1�
3775

1


where the wedge is de�ned as

ki;t �
Zi;tbKi;t

Therefore the measure of aggregate TFP loss in this model can be calculated as

� log TFPt = log

�
Zt
Z�t

�
=

1



"
log

 XN

i=1

Zi;t

k1�i;t

!
� (1� ) log

�XN

i=1

Zi;t
ki;t

�#
� log

�XN

i=1
Zi;t

�
=

1



h
log
�XN

i=1

�
Zi;t

bK1�
i;t

��
� (1� ) log

�XN

i=1

bKi;t

�
�  log

�XN

i=1
Zi;t

�i
Intuitively, idiosyncratic distortions � i generate a dispersion in the user cost of

capital hence a dispersion in the wedge ki;t. In the absence of distortion the user
cost of capital would be common across �rms and ki;t would degenerate to a constant

k =
�
J
h

� 1
 . Thus the actual aggregate TFP Zt would be the same as the �rst-best

aggregate TFP Z�t . This implies that the dispersion of ki;t is a direct indicator for

3Similar to Foster, Haltiwanger and Syverson (2008), the TFP considered in this paper is revenue-
based, or it is the TFPR instead of TFPQ.
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the magnitude of aggregate TFP loss. Although ki;t itself is unobservable, Equation

(7) links it to log sales-to-capital ratio log
�
Yi;tbKi;t

�
, which is observable. The property

that the negative e¤ect of distortions on aggregate TFP can be summarized by the
dispersion of log sales-to-capital ratio is similar to that modelled in Hsieh and Klenow
(2009) and Midrigan and Xu (2009).
To study the e¤ect of frictions on capital accumulation, we calculate on average

how much the actual log capital stock is di¤erent from the frictionless log capital stock.
Hence the aggregate capital stock loss is measured as

� logcKt = log

 cKtbK�
t

!

= log

 PN
i=1
bKi;tPN

i=1
bK�
i;t

!
= log

�XN

i=1

bKi;t

�
� log

�XN

i=1

bK�
i;t

�
Without a closed-form solution to the investment problem in the presence of ad-

justment costs, there is no speci�c conclusion one can draw about how much the actual
log capital stock would be lower or higher than the frictionless benchmark. In the case
of irreversibility, Abel and Eberly (1999) demonstrate that irreversibility may increase
or decrease capital accumulation due to the opposite user cost e¤ect and hangover
e¤ect. Furthermore, an increase in uncertainty can either increase or decrease capi-
tal stock under irreversibility relative to that under reversibility. In the presence of
quadratic adjustment costs, as illustrated in Bond, Söderbom and Wu (2011), capital
stock would be unambiguously lower than the frictionless case, since investment in
the presence of quadratic adjustment costs incurs a cost in addition to the Jorgen-
sonian user cost of capital. The loss of capital stock is larger under a higher level
of uncertainty. Wu (2009) shows that the e¤ect of �xed adjustment costs on capital
accumulation is the same as quadratic adjustment costs at complete certainty, but is
the same as irreversibility in an uncertain environment.

3 Empirical Speci�cation

3.1 Unobserved Heterogeneities

The goal of this paper is to quantify the e¤ects of distortions and frictions using the
above framework. Since the causes of distortions (� i) and frictions

�
b �

�
bq; bi; bf

��
are

not observable directly, we estimate this investment model in an indirect fashion. The
basic strategies are that, �rst, according to Equation (9) we rely on the distribution of

log sales-to-capital ratio
�
log
�
Yi;tbKi;t

��
to estimate the magnitude of distortions ; and

second, according to Figure 1a-1c we use the distribution and dynamics of investment
rate

�
Ii;t
Ki;t

�
to estimate the form and magnitude of adjustment costs.

10



The key challenge in the �rst strategy is that both heterogeneities in distortions � i
and heterogeneities in capital share �i or demand elasticity "i will lead to a dispersion

in
�
log
�
Yi;tbKi;t

��
. To distinguish heterogeneities in � i from those in �i or "i , we therefore

use additional information from pro�t-to-sales ratio
�
�i;t
Yi;t

�
, which depends on �i and

"i as show in Equation (3). However, without separate information about quantity of
output (Qi;t) and price of product (Pi;t), one cannot further distinguish heterogeneities
in �i from those in "i in this model. Hence we assume homogeneity in demand elasticity
and heterogeneity in capital share.

Assumption 1 Heterogeneity in the distortion of capital goods prices:

� i
i:i:d� N

�
0; �2�

�
That is each �rm i has a �rm-speci�c distortion � i, where � i is drawn independently

from an identical normal distribution with mean zero and standard deviation �� .

Assumption 2 Heterogeneity in the capital share in production function:

log �i
i:i:d� N

�
�log �; �

2
log �

�
That is each �rm i has a �rm-speci�c capital share �i, where log �i is drawn

independently from an identical normal distribution with mean �log � and standard
deviation �log �.
The key challenge in the second strategy is that the distribution and dynamics

of investment rate not only depend on the adjustment costs, but also depend on the
stochastic process de�ned in Equation (4). One concern is that a smooth stochastic
process (small �) with low adjustment costs (small b), or a volatile stochastic process
(large �) with high adjustment costs (large b) could both produce a smooth investment
series. To solve this identi�cation issue, we follow Bloom (2009) in using additional
information from sales growth rate (� log Yi;t). The rational comes from the fact that
log sales is a linear combination of log productivity/demand and log capital stock.
Therefore using investment rate and sales growth rate jointly distinguishes the stochas-
tic process and adjustment costs simultaneously. Another concern is that di¤erences
across �rms in the growth rate (heterogeneity in �i), as well as high adjustment costs
(large b), can both lead to persistent di¤erences across �rms in their investment rate
and sales growth rate. To get consistent estimate for the adjustment costs, therefore
it is important to allow for potential heterogeneities in the growth rate.

Assumption 3 Heterogeneity in the productivity/demand growth rate:

�i
i:i:d� N

�
��; �

2
�

�
That is each �rm i has a �rm-speci�c productivity/demand growth rate �i, where

�i is drawn independently from an identical normal distribution with mean �� and
standard deviation ��.
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The investment policy under di¤erent (� i; �i; �i) is di¤erent. Hence the dynamic
programming problem described in Equation (6) must be solved for each �rm i at
each value of (� i; �i; �i), which is infeasible even for a small sample. Therefore this
paper adopts a standard approach used in the literature modelling unobserved het-
erogeneities, for example, Eckstein and Wolpin (1999), to allow for a �nite type of
�rms.

Assumption 4 Finite type of �rms: There are 3 � 3 � 3 types of �rms, each
comprising a �xed proportion 1= (3� 3� 3) of the population, where the type set is
de�ned as z = f(�u; �v; �x) : u = 1; 2; 3; v = 1; 2; 3;x = 1; 2; 3g.

3.2 Measurement Errors

In addition to a rich structure of heterogeneities, another novelty of our empirical
speci�cation is that we model and estimate potential measurement errors in key vari-
ables. This is motivated by two facts. First, measurement errors are common in
�rm-level data. The identi�cation strategy discussed above employes four variables:
pro�t-to-sales ratio (�i;t=Yi;t); log sales-to-capital ratio

�
log
�
Yi;t= bKi;t

��
; investment

rate (Ii;t=Ki;t) and sales growth rate in log (� log Yi;t). All these variables in ratio
or growth rate are constructed from three variables in level: capital stock Ki;t, sales
Yi;t and pro�t �i;t. So in estimating the model using �rm-level data, we allow for
measurement errors in Ki;t, Yi;t and �i;t.
Second and more fundamentally, measurement errors may contaminate identi�-

cation which is crucial for the quantitative e¤ects of distortions and frictions. For
the e¤ect of distortions, neglecting measurement errors in Ki;t or Yi;t may lead to an
overestimation in the heterogeneity in � i hence overstates the e¤ect of distortions; ne-
glecting measurement errors in �i;t or Yi;t may overestimate the heterogeneity in �i
and underestimate the heterogeneity � i hence understates the e¤ect of distortions. For
the e¤ect of frictions, measurement errors in Ki;t and Yi;t will make the investment
rate and sales growth rate series more dispersed. Neglecting such measurement errors
will overestimate the volatility of the stochastic process and adjustment costs, hence
overstates the e¤ect of frictions.

Assumption 5 Measurement errors in the data:

Ki;t = K
0

i;t
exp(eK

i;t
), where eKi;t

i:i:d� N(0; �2meK)

Yi;t = Y 0i;t exp(e
Y
i;t), where e

Y
i;t

i:i:d� N(0; �2meY )

�i;t = �0i;t(1 + e
Y
i;t), where e

�
i;t

i:i:d� N(0; �2me�)

Here Ki;t, Yi;t and �i;t denote the observed capital stock, sales and pro�t, K
0
i;t,

Y
0
i;t and �

0
i;t denotes the true underlying capital stock, sales and pro�t which are not

measured accurately in the data. There is a multiplicative structure for measurement
errors in these variables, with mean zero and standard deviation �meK , �meY and �me�,
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respectively. The speci�cation for measurement errors in capital stock and sales guar-
antees positive values of these two variables, while the speci�cation for measurement
errors in pro�t allows for the possibility that recording errors may lead to a loss in the
measured pro�t.

3.3 Data Description

Since the estimation method we adopt is fully structural and parametric, to take into
account the e¤ect of potential model misspeci�cation on the estimated e¤ects, we
estimate the model for both UK and Chinese �rms and use the results of UK as our
critical benchmark.
The UK data employed in this paper has been analyzed previously by Bloom,

Bond and Van Reenen (2007), for the investment dynamics under uncertainty and
irreversibility. These �rm-level data are taken from the consolidated accounts of man-
ufacturing �rms listed on the U.K. stock market and are obtained from the Datastream
on-line service. The cleaned sample we use contains �rm-level data for a panel of 629
�rms between 1972 and 1991. On average there are 9 annual observations per �rm.
The data for Chinese �rms are from the Chinese Manufacturing Enterprise Survey.

Questionnaires were designed and surveys were implemented by economists at the
University of Michigan in collaboration with the Economics Research Institute of the
Chinese Academy of Social Sciences. The survey instrument was divided into two parts.
The objective part was directed to the �rm�s chief accountant. It is purely based on
accounting information concerning the enterprises. The subjective part was directed
to the chief managers�roughly equivalent to the CEOs�of the enterprises personally.
It contains attitudinal and qualitative questions with multiple choices. The sample
we use for estimation is made of a panel of 701 enterprises between 1994 to 1999.
These enterprises were sampled almost evenly from four provinces in China (Jiangsu,
Sichuan, Shanxi and Jilin) that together contribute about 20% of China�s industrial
output. The sample covers 39 industries in total, representative of China�s overall
industrial structure.
Four key variables are collected from both dataset: investment (Ii;t), capital stock

(Ki;t), sales (Yi;t), and pro�t (�i;t). In the UK sample, investment is de�ned as total
new �xed assets (DS435) less sales of �xed assets (DS423). Capital stock is con-
structed by applying a perpetual inventory procedure with a depreciation rate of 0.08.
The starting value was based on the net book value of the tangible �xed capital assets
(DS339) in the �rst observation within our sample period, adjusted for previous in�a-
tion. Subsequent values were obtained using accounts data on investment and asset
sales and an aggregate series for investment goods prices. Sales is the value of total
sales (DS104) de�ated by the aggregate GDP de�ator. Pro�t is recovered by adding
depreciation (DS136) back to the operating pro�t (DS137). Since operating pro�t is
the net pro�t before interest, tax and after depreciation, this gives us a pro�t before
interest, tax and depreciation.
In the Chinese sample, we use annual gross investment as a measure of investment
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expenditure (B108). Using annual average net book value of tangible �xed capital
assets (B11) and investment expenditure of each year (B108), capital stock is con-
structed according to Equation (5) with a discount rate of 0.035. Sales is de�ned
as sales revenue of products (B31). Since China has experienced a period from high
in�ation to de�ation during 1994 to 1999, the survey explicitly asked the annual per-
centage change in the price of its main product for each �rm and in each year (B140).
We use this information to de�ate the sales series. The pro�t is constructed using the
bottom-up method. That is we start with the pro�t after depreciation, interest and
tax (B43), to recover the pro�t before interest, tax and depreciation by topping up
depreciation (B10), interest (B41) and tax (B38).
One potential concern in comparing the UK and Chinese results is that �rms in

our UK sample are on average larger than those in our Chinese sample. The mean and
median number of employees are 4856 and 1102 in UK, and are 2011 and 1055 in China.
One possibility is that the �rm-level data from UKmight be consolidated across several
plants within the �rm. As pointed out by Bloom (2009), investment rate is featured
by spikes and zeros at the plant-level but by much smoother serials at the �rm-level.
Without accounting for possible aggregation in the �rm-level data could thus lead
to an overestimation for the quadratic adjustment costs and an underestimation for
the non-convex adjustment costs. To make sure the comparability across these two
samples, we assume that the UK data are aggregated over two plants and the Chinese
data are from a single plant so that plants in UK and in China have similar size in
terms of average number of employees.

Assumption 6 Aggregation: Each UK �rm is aggregated over 2 plants. For each
plant j of �rm i in period t, the law of motion for Zj;i;t is given by

logZj;i;t = �it+ zj;i;t

zj;i;t = �zj;i;t�1 +
1p
2
ei;t +

1p
2
ej;i;t

where ei;t
i:i:d:� N(0; �2), ej;i;t

i:i:d:� N(0; �2), ei;t ? ej;i;t, and e1;i;t ? e2;i;t.

That is plants (j = 1; 2) in the same �rm i share the common type (� i; �i; �i) and
a common �rm-level productivity/demand shock ei;t, but also have a plant-speci�c
productivity/demand shock ej;i;t. The 1p

2
equal weight of �rm-level shock and plant-

level shock implies that the overall level of uncertainty is still � for a �rm with two
plants, which is comparable to the level of uncertainty from a single-plant �rm as in
China.

4 Structural Estimation

This section estimates the structural parameters in the model and in the empirical
speci�cation using the MSM. Readers who are focused on the simulated e¤ects of
distortion and friction may skip to Section 5.
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4.1 Method of Simulated Moments

The MSM has been widely employed in the recent empirical investment literature. For
example, in addition to Cooper and Haltiwanger (2006) and Bloom (2009), Cooper and
Ejarque (2003) and Eberly, Rebelo and Vincent (2008) evaluate the Q-model; Bond,
Söderbom and Wu (2008) study the e¤ects of uncertainty on capital accumulation;
Henessy and Whited (2007), Schündeln (2006) and Bond, Söderbom and Wu (2007)
estimate the cost of �nancing investment, all through this structural econometric ap-
proach. To be more speci�c, following Gouriéroux and Monfort (1996), the MSM
estimator �� solves

b�� = argmin
�

 b�D � 1

S

SX
s=1

b�Ms (�)
!0



 b�D � 1

S

SX
s=1

b�Ms (�)
!

(13)

where � is the vector of parameters of our interest; b�Dis a set of empirical moments
estimated from an empirical dataset; b�M (�) is the same set of simulated moments
estimated from a simulated dataset based on the structural model; S is the number of
simulation paths; 
 is a positive de�nite weighting matrix.
Suppose the empirical dataset is a panel with N �rms and T years. Given the

unobserved heterogeneities across �rms, the asymptotics is for �xed T and N ! 1.
At the e¢ cient choice for the weighting matrix 
�, the MSM procedure provides a
global speci�cation test of the overidentifying restrictions of the model:

OI =
NS

1 + S

 b�D � 1

S

SX
s=1

b�Ms (�)
!0

�

 b�D � 1

S

SX
s=1

b�Ms (�)
!

� �2
h
dim

�b��� dim (�)i : (14)

4.2 Parameters

4.2.1 Parameters to Estimate

Table 1 lists the set of parameters to estimate (�). It includes the key parameter
characterizing the distortion �� ; three parameters measuring the magnitude of each
form of capital adjustment costs (bq; bi; bf ); the value of demand elasticity "; mean
and standard deviation of the log capital share �log � and �log �; mean and standard
deviation of the growth rate �� and ��; the standard deviation of productivity/demand
shocks or the level of uncertainty �; and the standard deviations of the measurement
errors in capital, sales and pro�t �meK , �meY , and �me�.

4.2.2 Predetermined Parameters

In addition to these 13 structural parameters, the depreciation rate �, the discount
rate r and the capital goods prices PK also a¤ect the investment decision through
the Jorgensonian user cost of capital J . We pin down the depreciation rate for UK
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and China by the di¤erence between mean
�
log
�
1 +

Ii;t
Ki;t

��
and mean (� log Yi;t),4

which are 0.08 and 0.035, respectively. As for the discount rate, a necessary condition
for �nite �rm value is that exp (�i) < 1+ r. The high growth rate of the Chinese
�rms therefore requires a minimum value of r = 0:12. To maintain comparability,
we impose r = 0:12 for the UK sample as well. A discount rate at 0.12 seems to be
high compared with typical value for discount rate imposed in most macro literature.
However, from the point of view of �rm owners, a required rate of return to capital at
12% is a conservative estimate. Bai, Hsieh and Qian (2005) have found that in China
the aggregate rate of return to capital averaged 25% during 1978-1993, fell during
1993-1998, and has become �at at roughly 20% since 1998. Following most investment
literature, we normalize the capital goods price to unity so that logPK = 0 in both
UK and China. A later section considers the sensitivity of the estimates to imposing
di¤erent values for �, r and logPK .
To determine the serial correlation in the stochastic productivity/demand, we fol-

low Cooper and Haltiwanger (2006) by estimating the following dynamic panel data
model,5

log Yi;t = �+ � log Yi;t�1 + (1� ) log bKi;t � � (1� ) log bKi;t�1 + �i + ei;t

We estimate this equation using system GMM and allow for a complete set of year
dummies to capture the aggregate shocks. � is estimated at 0.873 (with two-step
robust standard errors 0.041) for UK and 0.641 (with two-step robust standard errors
0.051) for China. The estimator of � for UK is very close to the value 0.885 found in
Cooper and Haltiwanger (2006), while a substantially lower estimator for China may
re�ect the attenuation bias due to measurement errors in the sales data. Therefore we
impose � = 0:8732 for both UK and China in estimating the investment model.

4.3 Moments and Identi�cation

4.3.1 Features of Empirical Moments

Table 2 lists the set of moments to match
�b�D�. This includes means, between-group

standard deviations, within-group standard deviations, skewness, serial correlations for
pro�t-to-sales ratio (�i;t=Yi;t), log sales-to-capital ratio

�
log
�
Yi;t= bKi;t

��
, investment

rate (Ii;t=Ki;t) and sales growth rate (� log Yi;t); two moments which captures how
investment and sales growth rate response to a proxy for the marginal revenue product
of capital (log (Yi;t=Ki;t)), and two moments that report the proportion of investment
spikes (Ii;t=Ki;t > 0:2) and investment inaction (Ii;t=Ki;t = 0).

4This is because by capital accumulation fomular Equation (5), log
�
1 +

Ii;t
Ki;t

�
= log

�
Ki;t+Ii;t
Ki;t

�
=

log
� bKi;tbKi;t�1(1��)

�
= 4 log bKi;t � log (1� �) ' 4 log bKi;t + �. While according to Equation (12),

4 log bKi;t = 4 log Yi;t = �i.
5This equation is derived by taking logs on both sides of the sales equation Yi;t =

i"ihi
1�i

Z
i
i;t
bK1�i
i;t ,

quasi di¤erencing and replacing logZi;t and � logZi;t�1 using the AR(1) structure speci�ed in Equa-
tion (4).
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The left panel of Table 2 reports the value of these empirical moments and their
standard errors estimated from the UK data, while the right panel presents the cor-
responding values for the Chinese sample. On average �rms in China have similar
pro�tability and investment rate as in UK, but a lower log sales-to-capital ratio and a
higher sales growth rate, both of which are consistent with a lower depreciation rate
imposed in China than in UK. In both countries, the between-group standard deviation
for pro�t-to-sales ratio and log sales-to-capital ratio are much larger than the within-
group counterparts, which highlights the importance of unobserved heterogeneities in
�i and/or in � i. Although log sales-to-capital ratio is indeed more dispersed in China
than in UK, one cannot infer more severe distortion in China simply from this di¤er-
ence, since the pro�t-to-sales ratio is also more dispersed in China than in UK. Both
investment rate and sales growth rate are more volatile in China than in UK, which
may imply a higher level of uncertainty or more measurement errors in China. In
both samples, pro�t-to-sales ratio is positively skewed and log sales-to-capital ratio is
much more symmetric. This justi�es the log-normal assumption for �i and normal-
ity assumption for � i. Investment rate is positively skewed and sales growth rate is
much more symmetric. This justi�es the normality assumption for �i and highlights
the importance of irreversibility in both samples. The high serial correlation for both
pro�t-to-sales ratio and log sales-to-capital ratio is another indicator for the impor-
tance of unobserved heterogeneities in �i and/or in � i. Investment rate is positively
correlated in both samples, which is consistent with the presence of quadratic adjust-
ment costs. Sales growth rate is positively correlated in UK but negatively correlated
in China. This implies that unobserved heterogeneities in �i might be more relevant
in the UK sample and measurement errors in sales might be greater in the Chinese
sample. The low correlation between investment rate and sales growth rate to the
proxy of MRPK is consistent with the importance of capital adjustment costs, but
is also consistent with large heterogeneities in the data. Finally, UK has a smaller
proportion of investment spikes and investment inaction than China. This may be the
result of smaller non-convex adjustment costs, or be the result of more aggregation in
UK than in China.

4.3.2 Illustration for Identi�cation

We discuss why this set of moments may identify the parameters of our interest by
illustrating how di¤erent moments vary with underlying parameters in di¤erent panels
of Table 3.6 We start with a model in which there is no capital adjustment costs,
unobserved heterogeneities, and measurement errors and label it as Model A in Table
3.1. In this baseline model there is virtually no variation in pro�t-to-sales ratio and
log capital-to-sales ratio. Investment rate and sales growth rate are very volatile,
negatively serially correlated and fully response to proxy of MRPK. About 40% �rms

6In all the simulations reported in Table 3, we impose r = 0:12, � = 0:05, �log � = �2:45, " = 25,
� = 0:8732, �� = 0:05 and � = 0:35, simulate S = 10 pathes for a panel of 10000 �rms and 58 years,
and calculate moments and TFP and capital stock losses using data in the last 8 years.
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invest more than 20% and no �rms stay in inaction. As expected, there is neither
aggregate TFP loss nor capital stock loss in a model without distortion and friction.
Keeping other parameters constant, Table 3.1 illustrate the moments when bq =

0:5, bi = 0:25 and bf = 0:05, respectively. Comparison with Model A shows which
moments are informative about capital adjustment costs. Overall the presence of these
adjustment costs reduces the responses of investment rate and sales growth rate to the
proxy of MRPK, and generates some within-group variation in the log sales-to-capital
ratio. Both the quadratic adjustment costs and irreversibility substantially reduce
the volatility and increase the serial correlation of investment rate and sales growth
rate. Both �xed adjustment costs and irreversibility generate a sizable proportion of
investment inaction and large positive skewness in investment rate and sales growth
rate. Aggregate TFP loss varies from 1.9% to 4.7% due to the presence of adjustment
costs, which is of similar magnitude as found in Midrigan and Xu (2009). The actual
capital stock is lower than the frictionless benchmark in the presence of quadratic and
�xed adjustment costs, but higher than the frictionless level with irreversibility, which
are both consistent with the prediction of the investment literature. We then simulate
a model when all three forms of adjustment costs are in present and call it Model B.
Table 3.2 illustrates the moments when �� = 0:5, �log � = 0:5 and �� = 0:025,

imposing zero and positive capital adjustment costs, respectively. Therefore moments
in the left and right panels should be compared with Model A and Model B, re-
spectively. Such comparison shows which moments are informative about unobserved
heterogeneities. From columns (1) and (2), we �nd that heterogeneities in � and �
both generate large between-group standard deviation and high serial correlation in
log sales-to-capital ratio, but only heterogeneities in � a¤ect pro�t-to-sales ratio. Al-
though similar dispersion in log sales-to-capital ratio can be generated from either �
and �, only heterogeneity in � cause a substantial loss in aggregate TFP. Even in a
model without any friction, the responsiveness of investment rate and sales growth
rate to the proxy of MRPK is much dampened due to the large heterogeneities in
the MRPK. The presence of heterogeneities in � increases the serial correlation in
investment rate and sales growth rate, which works in the same direction as quadratic
adjustment costs and irreversibility, but also increases the standard deviation of in-
vestment rate and sales growth rate, which works in the opposite direction of quadratic
adjustment costs and irreversibility. In the last column of Table 3.2, we then simulate
a model with both adjustment costs and unobserved heterogeneities and label it as
Model C.
Using Model C as benchmark, Table 3.3 illustrates which moments are informative

about measurement errors by simulating �meK = 0:2, �meY = 0:2 and �me� = 0:2,
respectively. The common �nding is that whenever a variable is contaminated with
measurement errors, there will be an increase in its within-group standard deviation
and a decrease in its serial correlation. In addition, measurement errors in capital
stock increase the correlation between investment rate and MRPK, but reduces the
correlation between sales growth rate and MRPK. Measurement errors in sales has the
opposite e¤ects. Finally, we notice that although measurement errors in capital and
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sales increases the standard deviation of log capital-to-sales ratio, it will not generate
any loss in aggregate TFP.

4.4 Empirical Results

Table 4 presents our estimation results. For each country, the �rst column reports the
optimal estimates of the structural parameters and the second column lists the corre-
sponding numerical standard errors. Simulated moments at these optimal estimates
are listed in the lower panel of Table 4 to compare with their empirical counterparts.
Overall the model has provided a close �t to the large set of the moments characteriz-
ing the distribution and dynamics of four key variables, with an OI value equal to 908
for UK and 825 for China.
In both UK and China, �� is estimated to be signi�cantly di¤erent from zero, and

is signi�cantly larger in China than in UK. This implies that distortions in capital
goods prices exist in both countries, but are indeed greater in China than in UK.
The estimates for two out of three forms of capital adjustment costs are found to

be quantitatively important. In particular, bbq = 0:245 in UK and bbq = 0:396 in China.
These quadratic adjustment costs imply an investment friction, which increases the
user cost of capital by about 3.1% and 4.9% for UK and China respectively.7 Similar
level of irreversibility is estimated for both countries, which implies that the resale
price of capital is about 10% lower than the purchase price of capital.
The estimate for the demand elasticity " is around 25, which seems to be higher

than what the macro literature would typically impose. This is because our model is
matching the average level of net pro�t to sales ratio, which is only around 11% in
our samples. Had we matched the gross pro�t to sales ratio, which is typically beyond
20%, the estimated value for " does substantially reduce. We report this robustness
test in next subsection. The estimated mean and standard deviation for log � implies
that capital share � varies from 0.047 to 0.167 with a median at 0.089 in UK, and varies
from 0.036 to 0.208 with a median at 0.086 in China. Both the dispersion and median
value of our estimate for � are very close to those in Jorgenson, Gollop and Fraumeni
(1987). Among the 28 U.S. manufacturing industries they estimated by production
function regression over intermediate input, capital input and labor input, the capital
share estimate varies from 0.0486 (apparel and other fabricated textile products) to
0.333 (tobacco) with median at 0.098 (electric machinery and equipment supplies).
Such estimate for � should be distinguished from the one in an aggregate production
function for value added with capital and labor inputs only, where Jorgenson, Gollop
and Fraumeni (1987) �nd a capital share of 0.385 for the U.S. in such an aggregate

7In the presence of quadratic adjustment costs only, the �rst-order condition of optimal investment

implies that Kt =
h

h
PK(J+Ct)

i 1


, where Ct = bq
�
It
Kt

�
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�
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�
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�
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model. Together, our estimate for " and � implies that at the median level the capital
coe¢ cient in the sales/pro�t function is 1�b = 0:680 in UK and 0:674 in China. Such
estimates are within the range of estimates of the revenue returns to scale, varying from
0.82 in Bachman, Caballero and Engel (2006), to 0.592 in Cooper and Haltiwanger
(2006).
The estimates for the mean of growth rate is 0.033 and 0.062 for UK and China,

respectively, where heterogeneities in growth rate are larger and more signi�cant in
UK than in China. The standard deviation for shocks � is estimated be 0.319 in
UK and 0.415 in China. These estimates indicate that on average the productiv-
ity/demand grows faster in China than in UK, within UK the productivity/demand
is more dispersed across �rms, and �rms in China face a higher level of uncertainty.
The model estimates signi�cant measurement errors in capital and pro�t for both

UK and China, and in sales for China. For all three variables we consider, the mea-
surement errors are greater in China than in UK.

4.5 Speci�cation Tests

Table 5 reports speci�cation tests for several restricted models for China, where the
preferred full model is listed as benchmark. Similar patterns are found for UK.
Columns (1), (2) and (3) show the results of imposing no capital adjustment costs,

no unobserved heterogeneities and no measurement errors, respectively. Compared
with the preferred full model, the OI value increases a lot for all three models. In
particular, a model without capital adjustment costs underestimates magnitude of
distortion and level of uncertainty. It generates too little within-group standard devi-
ation for pro�t-to-sales ratio and log sales-to-capital ratio, but too much within-group
standard deviation in investment rate and sales growth rate. It also fails to match the
large positive skewness and serial correlation in the investment rate. A model without
any unobserved heterogeneities cannot match the large between-group standard devi-
ation in pro�t-to-sales ratio and log sales-to-capital ratio and tends to overestimate
capital adjustment costs and level of uncertainty. A model without measurement errors
generates too little within-group standard deviation but too much serial correlation
for all the variables. It tends to overestimate distortions, capital adjustment costs and
level of uncertainty.
Columns (4), (5) and (6) illustrate the estimates for restricted models without

quadratic adjustment costs, without irreversibility, and without irreversibility and �xed
adjustment costs, respectively. All these models �t the data worse than the full model,
where a combination of quadratic adjustment costs and irreversibility �ts the data best.
This is similar to the �nding in Bloom (2009) for the �rm-level data. A combination
of quadratic and �xed adjustment costs can also �t the model reasonably well, which
is consistent with Cooper and Haltiwanger (2006). However, among the three forms
of adjustment costs, quadratic adjustment costs is the most relevant according to the
overall �t. This comes to the same conclusion as Eberly, Rebelo and Vincent (2008)
for �rm-level data.

20



Columns (7), (8) and (9) present the results for restricted models without het-
erogeneities in � , �, and �, respectively. Comparison between column (7) and the
benchmark model tests the null hypothesis Ho : �� = 0, which is �rmly rejected by
the di¤erences in the OI values. This implies that the feature of the data is con-
sistent with the existence of idiosyncratic distortions. Comparison between column
(8) and the benchmark model highlights the importance of allowing for heterogeneity
in the capital share. A model imposing common capital share would not be able to
match the large between-group standard deviation in pro�t-to-sales ratio. In order
to match the large between-group standard deviation in log sales-to-capital ratio, the
model will substantially over-estimate the magnitude of distortions. Finally, a model
with homogeneous growth rate tends to slightly over-estimate distortion and quadratic
adjustment costs.

4.6 Robustness Tests

Table 6 presents results for four robustness tests for China. The benchmark model
has imposed � = 0:035, r = 0:12 and logPK = 0. Column (1), (2) and (3) show
the results for the same model but imposing � = 0:045, r = 0:15 and logPK = 0:1,
respectively. All these alternative values imply a higher Jorgensonian user cost of
capital. Comparison with the benchmark, we �nd a higher Jorgensonian user cost
of capital indeed leads to a higher log sales-to-capital ratio and �ts this empirical
moment better. Nevertheless, the estimates for other parameters, in particular, for
distortions and capital adjustment costs, are relatively robust to the choices of these
three parameters. Therefore the key �nding of our estimation for signi�cant distortions
and frictions does not depend on our choice of Jorgensonian user cost of capital.
Column (4) re-estimates the model for China using gross pro�t to replace the net

pro�t in the set of the moments. Gross pro�t is the di¤erence between sales revenue and
the costs of goods sold. Subtracting selling, general and administrative expenses from
gross pro�t leads to net pro�t, or pro�t before interest, tax and depreciation. Since
there is no information about gross pro�t in UK, we have used the net pro�t for both
UK and China for comparison. With information about both gross and net pro�t for
China, we estimate the model to see whether our result depends on the choice of pro�t.
As we see in the Column (4), overall the model �ts the data better using gross pro�t
and the estimated demand elasticity reduces from 25 to 15.5. However, the estimates
for distortions and frictions are not signi�cantly di¤erent from our benchmark model,
where net pro�t has been employed.

4.7 Potential Heterogeneities in �

One caveat of our empirical strategy is to attribute all the heterogeneities in the user
cost of capital to idiosyncratic distortions in capital goods prices and assume common
depreciation rate. At the other extreme, one could attribute all the heterogeneities in
the user cost of capital to �rm-speci�c depreciation rate and assume common capital
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goods price across �rms.
To check to what extent the heterogeneities in the user cost of capital may be

explained by �rm-speci�c depreciation rate (�i), we compare the between-group stan-

dard deviation of log investment rate
�
log
�
1 +

Ii;t
Ki;t

�
' �i + �i

�
and sales growth rate

(� log Yi;t = �i), where the di¤erence can be attributed to potential heterogeneities in
�i. However, such deviations are 0.074 and 0.083 in UK, and 0.099 and 0.106 in China,
which reject the possibility of large heterogeneities in �i.

5 Quantitative E¤ects of Distortions and Frictions

5.1 Counterfactual Simulations

The estimated structural model provides a useful framework to quantify the e¤ects
of distortions on aggregate TFP and the e¤ects of frictions on capital stock. Table
7.1 and 7.2 simulate these e¤ects for UK and China, respectively. Since there are
heterogeneities in both capital share and growth rate, these e¤ects are simulated for
di¤erent type of �rms. In UK, on average the actual aggregate TFP is 30% lower than
the �rst-best aggregate TFP. And the capital stock is 11.2% lower than the frictionless
capital stock. Given the log TFP and log capital count for 0.33 and 0.67 in log output,
aggregate output is 17.4% lower than the level if there was no such distortions nor
frictions.
All else being equal, both the losses in aggregate TFP and in capital increase with

the capital share. The losses in capital stock also increase with the growth rate. In
other words, �rms with larger capital share and higher growth rate su¤er most from
distortion and friction in investment.
Table 7.2 shows that similar qualitative patterns are found in China. However,

quantitatively, the aggregate TFP loss is about 53%, and the capital stock is 21.5%
lower than the frictionless level. Both of these e¤ects are substantially larger than
those in UK. Together China�s aggregate output is 32.3% lower than the distortionless
and frictionless level.
We can also apply the estimated structural model as a laboratory, where controlled

experiments can be conducted to investigate the hypothetical questions, such as, how
aggregate TFP and capital stock losses would di¤er, if �rms in China face distortions
and frictions to the extent as in UK? Table 7.3 thus simulates the e¤ects of distortions
and frictions for China by imposing its �� , bq, and bi to be the corresponding values
estimated from UK. Table 7.4 reports gains from the improvement by comparing the
quantitative e¤ects in Table 7.2 with those in Table 7.3. We �nd that averaging across
di¤erent type of �rms, the aggregate TFP in China would enhance by 20.1%, and
the capital stock in China would increase by 5.3%, if these Chinese �rms had been
operating in an environment such as UK. A reduction in distortions and frictions would
therefore generate a 6.9% (= 0:344� 20:1%) and a 3.5% (= 0:656� 5:3%) increase in
aggregate output, which count for two-thirds and one-third in the overall increase in
aggregate output.
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5.2 Relating to Observables

The counterfactual simulations indicate that the main reason for more aggregate out-
put loss in China compared to UK is due to the idiosyncratic distortions in the capital
goods prices. Since the distortions we model are unobservable, it is interesting to link
it with some observable �rm characteristics and check whether our model predictions
are consistent with common institutional knowledge.
Our starting point is that if there is indeed idiosyncratic distortions in capital

goods prices, all else being equal, the log sales-to-capital ratio is higher for a �rm
facing unfavorable distortions and lower for a �rm bene�ting from favorable distortions.
However, all else is not equal. This is because, �rst, heterogeneities in capital share and
presence of capital adjustment costs may a¤ect the dispersion in log sales-to-capital
ratio as well, and second, measurement errors will also increase the dispersion in log
sales-to-capital ratio. Our speci�cation tests reported in Table 5 indicate that both of
these concerns are relevant in the data. However, as we have illustrated in Table 3, the
heterogeneities in capital share can be captured by dispersion in pro�t-to-sales ratio;
the e¤ects of capital adjustment costs can be captured by investment rate dynamics;
and �nally, measurement errors mainly cause an increase in within-group rather than
between-group dispersion. Therefore we focus on the between-group mean of log sales-
to-capital ratio

n
Et

h
log
�
Yi;t= bKi;t

�io
i
to �lter the e¤ects of measurement errors, use

between-group mean of pro�t-to-sales ratio fEt [�i;t=Yi;t]gi to control heterogeneity in
capital share, and include investment rate fEt [Ii;t=Ki;t]gi to control capital adjustment
costs. We then test whether the di¤erences in the remaining part of log sales-to-capital
ratio across �rms are statistically related with some �rm characteristics.
Table 8 presents the results of such regression for our Chinese sample. Variables

in upper case are dummy variables which indicate �rm size, ownership, location and
whether the chief manager of the �rm is a member of the communist party. The
baseline group is a large, collective-owned �rm in Jilin province whose chief manager
is a member of the communist party. We also include the age of the �rm, the age,
education and experience of the chief manager to control potential ability bias.
According to Table 8, all else being equal, a small �rm faces an actual capital goods

price that is 14.6% higher than a large �rm. Collective-owned �rms face the lowest
capital goods prices, while the private owned �rms face the highest prices, which
is about 65.3% higher than their collective counterpart. The capital goods prices
for state-owned �rms, �rms under share-holding system and foreign-owned �rms are
somewhere in between. Compared with �rms in Jilin province, on average �rms in
Jiangsu province have a capital goods price that is 36.8% higher. Finally, a �rm with
a chief manager who is a member of the communist party pays a capital goods price
that is 14.9% lower than otherwise.
All else being equal, if one takes the dispersion in the log sales-to-capital ratio as an

indicator of idiosyncratic policy and institutional distortions, our exercises imply that
small, private-owned �rms without political connection in east China face unfavorable
distortions compared with large, collective-owned �rms with political connection in
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north-east China, and the magnitude of such distortions is substantial. This �nding is
consistent with a large literature that links the factor market distortions with various
policy and institutional settings in China, such as, Dollar and Wei (2007), Li, Meng,
Wang and Zhou (2008) and Brandt, Tombe and Zhu (2010).

6 Conclusion

This paper o¤ers estimates for the e¤ects of distortions and frictions on aggregate
TFP loss and capital stock loss in UK and China. We estimate a neoclassical invest-
ment model with idiosyncratic distortions in capital goods prices and di¤erent forms
of capital adjustment costs, by matching pro�t-to-sales ratio, log sales-to-capital ra-
tio, investment rate and sales growth rate in their distribution and dynamics. Our
empirical speci�cation has allowed for potential heterogeneities in other dimensions
and measurement errors in the data, which are crucial for consistent estimate for the
e¤ects of our interest. Counterfactual simulations indicate that on average reducing
the dispersion of capital goods prices to the UK level would enhance aggregate TFP
by 20.1% and aggregate output by 6.9% in China, and moving the capital adjustment
costs to the UK level would increase capital stock by 5.3% and aggregate output by
3.5% in China. Under this framework, we �nd that small, private-owned �rms in east
China without political connection face unfavorable distortions in capital goods prices.
Like most empirical research in this line, the investment model estimated in this

paper is �rst, explicitly partial equilibrium in nature hence omits the market-clearing
relative prices, and second, for existing �rms only hence neglects entry and exit. In-
tuitively, taking into account e¤ects from these two aspects may even enlarge the
magnitudes estimated in this paper, if one assumes relatively higher capital goods
price in China than in UK, and deferred entry and exit due to idiosyncratic capital
goods prices. Such extension is beyond the scope of this paper and it is important to
develop future works along these two margins.
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Figure 1.1: Investment Policy for Quadratic Adjustment Costs 

 
 

Figure 1.2: Investment Policy for Irreversibility 

 
 

Figure 1.3: Investment Policy for Fixed Adjustment Costs 
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Parameters

σ τ

b q

b i

b f

ε
μ logβ

σ logβ

μ μ

σ μ

σ
σ meK

σ meY

σ me∏

Definition

mean of productivity/demand growth rate

standard deviation  of productivity/demand growth rate

standard deviation of  of productivity/demand shocks

Table 1. Parameters to Estimate

standard deviation of heterogeneities in distortion

standard deviation of measurement errors in capital stock

standard deviation of measurement errors in sales

standard deviation of measurement errors in profit

quadratic adjustment costs

irreversibility

fixed adjustment costs
demand elasticity
mean of log capital share in production function

standard deviation of heterogeneities in log capital share
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Number of Firms
Number of Years
Median No. of Employees
Mean No. of Employees

Set of Moments moments s.e. moments s.e.
mean(Π/Y) 0.110 0.003 0.111 0.003
mean(log(Y/Khat)) 0.749 0.022 0.565 0.027
mean(I/K) 0.125 0.003 0.123 0.004
mean(∆logY) 0.031 0.003 0.072 0.004
bsd(Π/Y) 0.049 0.003 0.079 0.002
wsd(Π/Y) 0.028 0.001 0.052 0.001
bsd(log(Y/K)) 0.541 0.017 0.777 0.015
wsd(log(Y/K)) 0.214 0.005 0.349 0.007
bsd(I/K) 0.095 0.004 0.128 0.006
wsd(I/K) 0.103 0.003 0.109 0.004
bsd(∆logY) 0.083 0.004 0.106 0.003
wsd(∆logY) 0.143 0.003 0.253 0.004
skew(Π/Y) 0.801 0.065 0.690 0.075
skew(log(Y/Khat)) 0.007 0.137 -0.089 0.054
skew(I/K) 2.723 0.096 2.552 0.097
skew(dlogY) 0.837 0.137 -0.045 0.041
scorr(Π/Y) 0.880 0.008 0.716 0.016
scorr(log(Y/Khat)) 0.943 0.005 0.899 0.007
scorr(I/K) 0.392 0.023 0.475 0.031
scorr(∆logY) 0.222 0.018 -0.285 0.019
corr(I/K, log(Y/K)) 0.139 0.022 0.222 0.023
corr(∆logY, log(Y/K)) 0.151 0.016 0.153 0.015
Prop(I/K>0.2) 0.153 0.007 0.177 0.009
Prop(I/K=0) 0.027 0.003 0.101 0.007

Table 2. Empirical Moments for UK and China
UK China

9 6
629 701

4856 2011
1102 1055
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Parameters Model A col (1) col(2) col (3) Model B

b q = 0 b q = 0.5 b q = 0 b q = 0 b q = 0.5

b i = 0 b i = 0 b i = 0.25 b i = 0 b i = 0.25
b f = 0 b f = 0 b f = 0 b f = 0.05 b f = 0.05

Set of Moments
mean(Π/Y) 0.123 0.121 0.123 0.121 0.117
mean(log(Y/Khat)) 0.605 0.622 0.574 0.619 0.681
mean(I/K) 0.179 0.110 0.125 0.176 0.114
mean(∆logY) 0.050 0.050 0.050 0.050 0.050
bsd(Π/Y) 0.000 0.001 0.000 0.001 0.003
wsd(Π/Y) 0.000 0.002 0.000 0.003 0.005
bsd(log(Y/K)) 0.001 0.081 0.071 0.039 0.076
wsd(log(Y/K)) 0.002 0.094 0.083 0.072 0.089
bsd(I/K) 0.123 0.055 0.090 0.139 0.064
wsd(I/K) 0.416 0.074 0.216 0.468 0.114
bsd(∆logY) 0.109 0.067 0.081 0.102 0.072
wsd(∆logY) 0.339 0.144 0.196 0.290 0.161
skew(Π/Y) 0.000 -1.521 0.000 -1.039 -0.304
skew(log(Y/Khat)) 0.000 -0.019 -1.328 -0.168 -0.561
skew(I/K) 1.175 0.304 2.723 2.508 0.542
skew(dlogY) 0.004 0.023 1.167 0.855 0.267
scorr(Π/Y) N.A. 0.571 N.A. -0.062 0.394
scorr(log(Y/Khat)) N.A. 0.675 0.666 0.350 0.665
scorr(I/K) -0.067 0.628 0.141 -0.075 0.392
scorr(∆logY) -0.071 0.115 0.067 -0.008 0.110
corr(I/K, log(Y/K)) 1.000 0.973 0.896 0.927 0.924
corr(∆logY, log(Y/K)) 1.000 0.793 0.896 0.972 0.837
Prop(I/K>0.2) 0.410 0.166 0.217 0.183 0.372
Prop(I/K=0) 0.000 0.001 0.539 0.731 0.496
Loss in TFP and Capital Stock
∆logTFP 0.000 -0.047 -0.032 -0.019 -0.040
∆logKhat 0.000 -0.164 0.092 -0.046 -0.237

Table 3.1. Illustration for Idenfication of Capital Adjustment Costs
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Param
eters

M
odel A

col (1)
col(2)

col (3) 
M

odel B
col (1)

col(2)
col (3) 

M
odel C

σ
logβ =  0

σ
logβ =  0.5

σ
logβ =  0

σ
logβ =  0

σ
logβ =  0

σ
logβ =  0.5

σ
logβ =  0

σ
logβ =  0

σ
logβ =  0.5

σ
τ =  0

σ
τ =  0

σ
τ =  0.5

σ
τ =  0

σ
τ =  0

σ
τ =  0

σ
τ =  0.5

σ
τ =  0

σ
τ =  0.5

σ
μ =  0

σ
μ =  0

σ
μ =  0

σ
μ =  0.025

σ
μ =  0

σ
μ =  0

σ
μ =  0

σ
μ =  0.025

σ
μ =  0.025

Set of M
om

ents
m

ean(Π
/Y)

0.123
0.135

0.123
0.123

0.117
0.128

0.117
0.117

0.128
m

ean(log(Y/Khat))
0.605

0.605
0.605

0.605
0.681

0.681
0.685

0.679
0.682

m
ean(I/K)

0.179
0.179

0.179
0.179

0.114
0.114

0.114
0.114

0.114
m

ean(∆logY)
0.050

0.050
0.050

0.050
0.050

0.050
0.050

0.050
0.050

bsd(Π
/Y)

0.000
0.048

0.000
0.000

0.003
0.046

0.003
0.003

0.046
w

sd(Π
/Y)

0.000
0.000

0.000
0.000

0.005
0.006

0.005
0.005

0.006
bsd(log(Y/K))

0.001
0.521

0.499
0.001

0.076
0.520

0.478
0.079

0.703
w

sd(log(Y/K))
0.002

0.002
0.002

0.002
0.089

0.096
0.090

0.090
0.097

bsd(I/K)
0.123

0.123
0.123

0.126
0.064

0.064
0.064

0.069
0.070

w
sd(I/K)

0.416
0.416

0.416
0.417

0.114
0.116

0.117
0.112

0.117
bsd(∆logY)

0.109
0.109

0.109
0.112

0.072
0.072

0.071
0.075

0.075
w

sd(∆logY)
0.339

0.339
0.339

0.339
0.161

0.166
0.161

0.160
0.166

skew
(Π

/Y)
0.000

0.683
0.000

0.000
-0.304

0.710
-0.293

-0.332
0.712

skew
(log(Y/Khat))

0.000
0.000

0.000
-1.300

-0.561
0.083

-0.011
-0.577

0.031
skew

(I/K)
1.175

1.176
1.175

1.178
0.542

0.602
0.734

0.562
0.807

skew
(dlogY)

0.004
0.004

0.004
0.003

0.267
0.256

0.308
0.273

0.298
scorr(Π

/Y)
N

.A
.

1.000
1.000

1.000
0.394

0.986
0.427

0.424
0.987

scorr(log(Y/Khat))
N

.A
.

1.000
1.000

0.252
0.665

0.981
0.980

0.676
0.989

scorr(I/K)
-0.067

-0.067
-0.067

-0.062
0.392

0.377
0.363

0.419
0.379

scorr(∆logY)
-0.071

-0.071
-0.071

-0.066
0.110

0.092
0.104

0.124
0.102

corr(I/K, log(Y/K))
1.000

0.546
0.563

0.968
0.924

0.368
0.395

0.916
0.291

corr(∆logY, log(Y/K))
1.000

0.565
0.581

1.000
0.837

0.324
0.346

0.832
0.250

Prop(I/K>0.2)
0.410

0.410
0.410

0.411
0.372

0.363
0.310

0.370
0.308

Prop(I/K=0)
0.000

0.000
0.000

0.000
0.496

0.497
0.488

0.500
0.495

Loss in TFP and Capital Stock
∆logTFP

0.000
0.000

-0.485
0.000

-0.040
-0.040

-0.490
-0.040

-0.490
∆logKhat

0.000
0.000

0.000
0.000

-0.237
-0.237

-0.249
-0.237

-0.249

Table 3.2. Illustration for Idenfication of U
nobserved H

eterogeneities
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Parameters Model C col (1) col(2) col (3) Model D
σ meK =  0 σ meK =  0.2 σ meK =  0 σ meK =  0 σ meK =  0.2

σ meY =  0 σ meY =  0 σ meY =  0.2 σ meY =  0 σ meY =  0.2

σ me∏ =  0 σ me∏ =  0 σ me∏ =  0 σ me∏ =  0.2 σ me∏ =  0.2

Set of Moments
mean(Π/Y) 0.128 0.128 0.131 0.128 0.131
mean(log(Y/Khat)) 0.682 0.680 0.682 0.682 0.680
mean(I/K) 0.114 0.117 0.114 0.114 0.117
mean(∆logY) 0.050 0.050 0.050 0.050 0.050
bsd(Π/Y) 0.046 0.046 0.048 0.047 0.049
wsd(Π/Y) 0.006 0.006 0.027 0.026 0.038
bsd(log(Y/K)) 0.703 0.706 0.706 0.703 0.709
wsd(log(Y/K)) 0.097 0.196 0.211 0.097 0.271
bsd(I/K) 0.070 0.072 0.070 0.070 0.072
wsd(I/K) 0.117 0.124 0.117 0.117 0.124
bsd(∆logY) 0.075 0.075 0.085 0.075 0.085
wsd(∆logY) 0.166 0.166 0.325 0.166 0.325
skew(Π/Y) 0.712 0.712 1.032 0.935 1.211
skew(log(Y/Khat)) 0.031 0.024 0.027 0.031 0.020
skew(I/K) 0.807 1.026 0.807 0.807 1.026
skew(dlogY) 0.298 0.298 0.055 0.298 0.055
scorr(Π/Y) 0.987 0.987 0.729 0.733 0.576
scorr(log(Y/Khat)) 0.989 0.928 0.917 0.989 0.863
scorr(I/K) 0.379 0.355 0.379 0.379 0.355
scorr(∆logY) 0.102 0.102 -0.324 0.102 -0.324
corr(I/K, log(Y/K)) 0.291 0.315 0.281 0.291 0.304
corr(∆logY, log(Y/K)) 0.250 0.241 0.287 0.250 0.278
Prop(I/K>0.2) 0.308 0.297 0.308 0.308 0.297
Prop(I/K=0) 0.495 0.495 0.495 0.495 0.495
Loss in TFP and Capital Stock
∆logTFP -0.490 -0.490 -0.490 -0.490 -0.490
∆logKhat -0.249 -0.249 -0.249 -0.249 -0.249

Table 3.3. Illustration for Idenfication of Measurement Errors
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Parameters estimate s.e. estimate s.e.
σ τ 0.308 0.064 0.499 0.049

b q 0.245 0.040 0.396 0.044

b i 0.092 0.023 0.119 0.027

b f 0.000 0.000 0.000 0.001
ε 24.997 1.616 24.924 1.718

μ logβ -2.425 0.021 -2.449 0.024

σ logβ 0.521 0.026 0.720 0.020

μ μ 0.033 0.001 0.062 0.002

σ μ 0.024 0.006 0.016 0.016

σ 0.319 0.018 0.451 0.023
σ meK 0.165 0.006 0.369 0.010

σ meY 0.005 0.065 0.123 0.009
σ me∏ 0.121 0.008 0.322 0.013

Set of Moments empirical simulated empirical simulated
mean(Π/Y) 0.110 0.137 0.111 0.148
mean(log(Y/Khat)) 0.749 0.754 0.565 0.491
mean(I/K) 0.125 0.129 0.123 0.115
mean(∆logY) 0.031 0.034 0.072 0.063
bsd(Π/Y) 0.049 0.052 0.079 0.081
wsd(Π/Y) 0.028 0.017 0.052 0.053
bsd(log(Y/K)) 0.541 0.619 0.778 0.898
wsd(log(Y/K)) 0.214 0.155 0.349 0.351
bsd(I/K) 0.095 0.049 0.128 0.081
wsd(I/K) 0.103 0.081 0.109 0.107
bsd(∆logY) 0.083 0.051 0.106 0.102
wsd(∆logY) 0.143 0.122 0.253 0.252
skew(Π/Y) 0.801 0.827 0.690 1.407
skew(log(Y/Khat)) 0.007 0.015 -0.089 0.032
skew(I/K) 2.723 0.862 2.552 2.064
skew(dlogY) 0.837 0.153 -0.045 0.076
scorr(Π/Y) 0.880 0.894 0.716 0.645
scorr(log(Y/Khat)) 0.943 0.940 0.899 0.851
scorr(I/K) 0.392 0.490 0.475 0.435
scorr(∆logY) 0.222 0.102 -0.285 -0.177
corr(I/K, log(Y/K)) 0.139 0.284 0.222 0.347
corr(∆logY, log(Y/K)) 0.151 0.201 0.153 0.198
Prop(I/K>0.2) 0.153 0.208 0.177 0.196
Prop(I/K=0) 0.027 0.023 0.101 0.137

OI

UK China

908 825

Table 4. Estimation Results for UK and China
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Param
eters

benchm
ark

col (1)
col (2)

col (3)
col (4)

col (5)
col (6)

col (7)
col (8)

col (9)
σ

τ
0.499

0.289
0.000

0.592
0.504

0.484
0.575

0.000
0.800

0.543
b

q
0.396

0.000
1.099

0.747
0.000

0.736
1.326

0.413
0.530

0.416
b

i
0.119

0.000
0.432

0.375
0.132

0.000
0.000

0.160
0.128

0.112
b

f
0.000

0.000
0.000

0.000
0.000

0.011
0.000

0.000
0.000

0.000
ε

24.924
24.879

12.442
24.718

24.255
24.952

24.967
24.835

23.062
24.996

μ
logβ

-2.449
-2.383

-2.566
-2.579

-2.340
-2.467

-2.448
-2.490

-2.270
-2.454

σ
logβ

0.720
0.729

0.000
0.674

0.662
0.747

0.737
0.791

0.000
0.699

μ
μ

0.062
0.070

0.069
0.068

0.035
0.069

0.065
0.067

0.059
0.065

σ
μ

0.016
0.000

0.000
0.000

0.019
0.012

0.035
0.020

0.035
0.000

σ
0.451

0.250
0.595

0.585
0.450

0.472
0.552

0.452
0.496

0.453
σ

m
eK

0.369
0.247

0.000
0.000

0.219
0.399

0.436
0.363

0.348
0.362

σ
m

eY
0.123

0.107
0.006

0.000
0.129

0.117
0.111

0.115
0.145

0.123
σ

m
e∏

0.322
0.249

0.450
0.000

0.316
0.318

0.336
0.314

0.450
0.328

Sim
ulated M

om
ents

m
ean(Π

/Y)
0.148

0.158
0.147

0.129
0.159

0.144
0.144

0.149
0.141

0.145
m

ean(log(Y/Khat))
0.491

0.443
0.588

0.605
0.354

0.543
0.530

0.529
0.328

0.499
m

ean(I/K)
0.115

0.152
0.116

0.115
0.095

0.125
0.120

0.121
0.111

0.118
m

ean(∆logY)
0.063

0.071
0.070

0.069
0.035

0.070
0.065

0.068
0.059

0.065
bsd(Π

/Y)
0.081

0.089
0.027

0.061
0.082

0.082
0.081

0.089
0.028

0.078
w

sd(Π
/Y)

0.053
0.045

0.060
0.003

0.056
0.051

0.053
0.053

0.061
0.052

bsd(log(Y/K))
0.898

0.822
0.305

0.879
0.855

0.910
0.938

0.823
0.790

0.904
w

sd(log(Y/K))
0.351

0.244
0.257

0.188
0.249

0.371
0.410

0.344
0.343

0.344
bsd(I/K)

0.081
0.108

0.076
0.074

0.123
0.080

0.084
0.083

0.086
0.079

w
sd(I/K)

0.107
0.295

0.080
0.081

0.226
0.106

0.096
0.105

0.099
0.107

bsd(∆logY)
0.102

0.100
0.143

0.115
0.120

0.103
0.112

0.103
0.106

0.101
w

sd(∆logY)
0.252

0.275
0.312

0.240
0.282

0.253
0.262

0.251
0.264

0.254
skew

(Π
/Y)

1.407
1.302

0.024
0.879

1.347
1.425

1.438
1.471

0.288
1.401

skew
(log(Y/Khat))

0.032
0.028

-0.251
0.110

0.027
0.038

0.058
0.057

-0.024
0.032

skew
(I/K)

2.064
1.062

1.027
1.401

3.663
1.659

1.768
1.892

2.026
2.049

skew
(dlogY)

0.076
0.023

0.073
0.124

0.416
0.025

0.020
0.052

0.081
0.049

scorr(Π
/Y)

0.645
0.755

0.007
0.998

0.625
0.665

0.642
0.689

0.007
0.626

scorr(log(Y/Khat))
0.851

0.903
0.733

0.972
0.913

0.839
0.822

0.832
0.820

0.856
scorr(I/K)

0.435
-0.069

0.629
0.596

0.183
0.419

0.467
0.453

0.505
0.430

scorr(∆logY)
-0.177

-0.189
-0.027

0.003
-0.133

-0.164
-0.138

-0.162
-0.215

-0.186
corr(I/K, log(Y/K))

0.347
0.294

0.901
0.370

0.289
0.381

0.413
0.379

0.369
0.348

corr(∆logY, log(Y/K))
0.198

0.275
0.577

0.245
0.267

0.196
0.197

0.220
0.237

0.201
Prop(I/K>0.2)

0.196
0.368

0.215
0.191

0.156
0.217

0.193
0.215

0.188
0.200

Prop(I/K=0)
0.137

0.000
0.157

0.158
0.388

0.144
0.056

0.145
0.150

0.136
O

I
825

9197
7769

3319
4264

929
1158

917
3168

840

Table 5. Specification Tests
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Models δ  = 0.045 r  = 0.15 logP K = 0.1

Parameters estimate s.e. estimate estimate estimate estimate s.e.
σ τ 0.4993 0.0486 0.5370 0.5764 0.5617 0.4319 0.0637

b q 0.3964 0.0441 0.4646 0.4536 0.4670 0.4554 0.0584

b i 0.1191 0.0273 0.1297 0.1020 0.1235 0.1304 0.0426

b f 0.0000 0.0011 0.0000 0.0000 0.0001 0.0001 0.0012
ε 24.9238 1.7176 24.9035 24.9835 24.9807 15.4996 0.9001

μ logβ -2.4493 0.0244 -2.4139 -2.3594 -2.4116 -2.1815 0.0235

σ logβ 0.7202 0.0199 0.6962 0.6760 0.6899 0.7623 0.0204

μ μ 0.0623 0.0023 0.0574 0.0672 0.0652 0.0649 0.0019

σ μ 0.0156 0.0158 0.0260 0.0182 0.0185 0.0193 0.0136

σ 0.4511 0.0229 0.4514 0.4518 0.4554 0.4516 0.0206
σ meK 0.3690 0.0098 0.3643 0.3632 0.3668 0.3751 0.0100

σ meY 0.1228 0.0094 0.1311 0.1273 0.1263 0.1107 0.0110
σ me∏ 0.3221 0.0133 0.3187 0.2992 0.3081 0.2153 0.0108

Set of Moments empirical simulated simulated simulated simulated empirical simulated
mean(Π/Y) 0.1109 0.1476 0.1493 0.1539 0.1491 0.2319 0.2049
mean(log(Y/Khat)) 0.5651 0.4911 0.5277 0.5626 0.5579 0.5651 0.2443
mean(I/K) 0.1232 0.1155 0.1218 0.1212 0.1188 0.1232 0.1190
mean(∆logY) 0.0719 0.0627 0.0578 0.0676 0.0656 0.0719 0.0654
bsd(Π/Y) 0.0793 0.0814 0.0803 0.0813 0.0794 0.1070 0.1098
wsd(Π/Y) 0.0522 0.0527 0.0530 0.0514 0.0510 0.0530 0.0513
bsd(log(Y/K)) 0.7775 0.8975 0.8973 0.9019 0.9072 0.7775 0.9000
wsd(log(Y/K)) 0.3494 0.3505 0.3475 0.3438 0.3486 0.3494 0.3573
bsd(I/K) 0.1282 0.0811 0.0834 0.0826 0.0812 0.1282 0.0833
wsd(I/K) 0.1091 0.1071 0.1049 0.1076 0.1060 0.1091 0.1089
bsd(∆logY) 0.1058 0.1017 0.1028 0.1005 0.1014 0.1058 0.1068
wsd(∆logY) 0.2529 0.2522 0.2571 0.2507 0.2532 0.2529 0.2560
skew(Π/Y) 0.6898 1.4071 1.3913 1.3451 1.3656 0.7321 1.2754
skew(log(Y/Khat)) -0.0890 0.0317 0.0296 0.0256 0.0289 -0.0890 0.0434
skew(I/K) 2.5515 2.0641 1.9465 1.9836 2.0365 2.5515 2.0123
skew(dlogY) -0.0453 0.0756 0.0662 0.0694 0.0721 -0.0453 0.0726
scorr(Π/Y) 0.7164 0.6453 0.6352 0.6563 0.6483 0.8149 0.7842
scorr(log(Y/Khat)) 0.8992 0.8506 0.8528 0.8562 0.8547 0.8992 0.8484
scorr(I/K) 0.4749 0.4351 0.4547 0.4416 0.4390 0.4749 0.4378
scorr(∆logY) -0.2848 -0.1771 -0.1931 -0.1882 -0.1855 -0.2848 -0.1423
corr(I/K, log(Y/K)) 0.2221 0.3471 0.3481 0.3449 0.3445 0.2221 0.3670
corr(∆logY, log(Y/K)) 0.1530 0.1977 0.1976 0.1953 0.1945 0.1530 0.2062
Prop(I/K>0.2) 0.1767 0.1963 0.2099 0.2081 0.2015 0.1767 0.2067
Prop(I/K=0) 0.1008 0.1366 0.1326 0.1313 0.1336 0.1008 0.1336

OI 870 920 879

benchmark gross profit

Table 6. Robustness Tests

825 715
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type
β

    μ
Δ

logTFP
Δ

logK
1-γ

    Δ
logY

type
β

    μ
Δ

logTFP
Δ

logK
1-γ

    Δ
logY

1
0.047

0.004
-0.103

-0.052
0.529

-0.076
1

0.036
0.043

-0.166
-0.109

0.461
-0.140

2
0.047

0.033
-0.103

-0.073
0.529

-0.087
2

0.036
0.062

-0.168
-0.127

0.461
-0.149

3
0.047

0.062
-0.102

-0.086
0.529

-0.093
3

0.036
0.081

-0.168
-0.132

0.461
-0.151

4
0.089

0.004
-0.250

-0.084
0.680

-0.137
4

0.086
0.043

-0.480
-0.178

0.674
-0.277

5
0.089

0.033
-0.250

-0.107
0.680

-0.153
5

0.086
0.062

-0.488
-0.193

0.674
-0.289

6
0.089

0.062
-0.249

-0.122
0.680

-0.162
6

0.086
0.081

-0.483
-0.217

0.674
-0.304

7
0.167

0.004
-0.550

-0.135
0.801

-0.218
7

0.208
0.043

-0.936
-0.305

0.833
-0.410

8
0.167

0.033
-0.547

-0.169
0.801

-0.244
8

0.208
0.062

-0.939
-0.326

0.833
-0.429

9
0.167

0.062
-0.545

-0.179
0.801

-0.252
9

0.208
0.081

-0.938
-0.344

0.833
-0.444

average
0.101

0.033
-0.300

-0.112
0.670

-0.174
average

0.110
0.062

-0.530
-0.215

0.656
-0.323

type
β

    μ
Δ

logTFP
Δ

logK
1-γ

    Δ
logY

type
β

    μ
Δ

Δ
logTFP

Δ
Δ

logK
1-γ

    Δ
Δ

logY
1

0.036
0.043

-0.070
-0.085

0.461
-0.077

1
0.036

0.043
0.096

0.024
0.461

0.063
2

0.036
0.062

-0.070
-0.098

0.461
-0.083

2
0.036

0.062
0.097

0.029
0.461

0.066
3

0.036
0.081

-0.070
-0.102

0.461
-0.085

3
0.036

0.081
0.097

0.030
0.461

0.066
4

0.086
0.043

-0.241
-0.136

0.674
-0.170

4
0.086

0.043
0.240

0.043
0.674

0.107
5

0.086
0.062

-0.243
-0.145

0.674
-0.177

5
0.086

0.062
0.244

0.048
0.674

0.112
6

0.086
0.081

-0.241
-0.165

0.674
-0.190

6
0.086

0.081
0.242

0.052
0.674

0.114
7

0.208
0.043

-0.672
-0.224

0.833
-0.299

7
0.208

0.043
0.264

0.080
0.833

0.111
8

0.208
0.062

-0.674
-0.243

0.833
-0.315

8
0.208

0.062
0.265

0.083
0.833

0.114
9

0.208
0.081

-0.672
-0.256

0.833
-0.325

9
0.208

0.081
0.266

0.089
0.833

0.118
average

0.110
0.062

-0.328
-0.161

0.656
-0.219

average
0.110

0.062
0.201

0.053
0.656

0.104

7.1. Sim
ulation for U

K
7.2. Sim

ulation for China

7.3. Sim
ulation for China using U

K as Counterfactual
7.4. G

ain from
 Im

provem
ent for China

Table 7. Losses in A
ggregate TFP and Capital Stock
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baseline size ownship location manager full

E t [Π i,t /Y i,t ] -3.298 -3.267 -3.115 -3.154 -3.258 -2.938

(0.160) (0.160) (0.132) (0.132) (0.162) (0.159)

E t [I i,t /K i,t ] 1.199 1.139 1.343 1.081 1.169 1.150

(0.078) (0.078) (0.082) (0.084) (0.077) (0.079)

firm age 0.012 0.012 0.004 0.010 0.012 0.003
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

SMALL 0.126 0.146
(0.032) (0.033)

MEDIUM 0.032 0.024
(0.025) (0.025)

PRIVATE 0.617 0.653
(0.105) (0.120)

STATE 0.490 0.529
(0.037) (0.038)

SHAREHOLDING 0.171 0.271
(0.039) (0.041)

FOREIGN 0.176 0.261
(0.070) (0.070)

JIANGSU 0.340 0.368
(0.028) (0.031)

SICHUAN 0.137 0.183
(0.030) (0.031)

SHANXI 0.138 0.156
(0.030) (0.030)

manager age 0.000 0.003
(0.002) (0.002)

manager education -0.049 0.001
(0.018) (0.018)

manager experience 0.003 0.002
(0.001) (0.001)

NOPARTYMEMBERSHIP 0.066 0.149
(0.055) (0.058)

Note: 
     1. The baseline group is LARGE, COLLECTIVE, JILIN, and PARTYMEMBERSHIP.
     2. Robust standard errors are reported in (  ).

Table 8. Regression for E t [log (Y i,t /K i,t )] in China
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